
‭Serial Wombat 4B Chip User Guide‬
‭Version 2.0.3_A (Corresponds to Serial Wombat 4B firmware version 2.0.3)‬

‭An Open Source Project‬

‭Created by‬
‭Broadwell Consulting Inc.‬

‭Table of contents:‬

‭An‬‭Open‬‭Source‬‭Project‬‭...‬‭1‬
‭Table‬‭of‬‭contents:‬‭..‬‭2‬
‭Overview‬‭...‬‭2‬
‭Arduino‬‭Library‬‭..‬‭6‬
‭Python‬‭/‬‭MicroPython‬‭Library‬‭...‬‭8‬
‭Circuit‬‭Construction‬‭..‬‭9‬
‭Pin‬‭Modes‬‭...‬‭11‬
‭Digital‬‭Input‬‭Modes‬‭..‬‭11‬

‭Digital‬‭GPIO‬‭Input‬‭Pin‬‭Mode‬‭...‬‭11‬
‭Debounced‬‭Input‬‭Pin‬‭Mode‬‭..‬‭12‬
‭Pulse‬‭Timer‬‭Pin‬‭Mode‬‭...‬‭15‬
‭UART‬‭Receive‬‭Pin‬‭Mode‬‭...‬‭18‬
‭Quadrature‬‭/‬‭Rotary‬‭Encoder‬‭Pin‬‭Mode‬‭..‬‭19‬

‭Output‬‭Modes‬‭...‬‭21‬
‭Digital‬‭Output‬‭Pin‬‭Mode‬‭..‬‭21‬
‭Servo‬‭Output‬‭Pin‬‭Mode‬‭...‬‭22‬
‭PWM‬‭Pin‬‭Mode‬‭..‬‭25‬
‭UART‬‭Transmit‬‭Pin‬‭Mode‬‭..‬‭26‬
‭Protected‬‭Output‬‭Pin‬‭Mode‬‭..‬‭28‬
‭Watchdog‬‭Pin‬‭Mode‬‭...‬‭30‬

‭Analog‬‭Input‬‭Pin‬‭Mode‬‭..‬‭32‬
‭Sleep‬‭Mode‬‭...‬‭35‬
‭Unique‬‭Identifier‬‭..‬‭36‬
‭Protocol‬‭Analyzer‬‭..‬‭37‬
‭Troubleshooting‬‭...‬‭38‬

‭Step‬‭1:‬ ‭Check‬‭the‬‭basics‬‭..‬‭38‬
‭Step‬‭2:‬ ‭Check‬‭the‬‭YouTube‬‭video‬‭and‬‭comments‬‭..‬‭39‬

‭Additional‬‭Resources:‬‭...‬‭40‬
‭YouTube‬‭...‬‭40‬
‭Arduino‬‭Library‬‭..‬‭40‬
‭Serial‬‭Wombat‬‭4B‬‭firmware‬‭...‬‭40‬

‭Support‬‭and‬‭Technical‬‭Assistance‬‭..‬‭40‬
‭Revision‬‭History‬‭..‬‭41‬

‭Overview‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭2‬‭of‬‭41‬
‭V2.0.3_B‬

‭The Serial Wombat 4B chip family is designed to add smart I/O capability to Arduino or other‬
‭systems capable of communicating over I2C. Each Serial Wombat 4B chip adds up to 4 I/O‬
‭pins (1 is input only, and 3 are Input/Output Capable).‬

‭The Serial Wombat 4B firmware is open source under MIT license available here:‬

‭https://github.com/BroadwellConsultingInc/SerialWombat‬

‭The Serial Wombat 4B chip is a peripheral chip that is commanded by a host device. It is not a‬
‭device that runs downloaded user code directly. An Arduino library is available to control the‬
‭Serial Wombat 4B chip from an Arduino host. The I2C communication protocol is available for‬
‭user that wish to interface to the Serial Wombat 4B chip from other platforms.‬

‭The Serial Wombat 4B firmware is heavily commented using Doxygen compatible commenting.‬
‭The compiled Doxygen documentation is available here:‬
‭https://broadwellconsultinginc.github.io/SerialWombat/sw4AB/index.html‬
‭This documentation exposes the internal workings of the Serial Wombat chip and its protocol.‬
‭This documentation is typically not needed in order to use the Serial Wombat 4B chip from‬
‭Arduino due to the availability of a wrapper library.‬

‭Each Serial Wombat pin runs an individual state machine every 1mS allowing that pin to solve‬
‭common embedded systems problems. Pin modes can be mixed and matched (for example,‬
‭two debounced inputs, an analog input, and a servo output).‬

‭The Serial Wombat 4B chip supports the following pin modes:‬

‭●‬ ‭Digital Input (with optional pull-up) on all pins‬
‭●‬ ‭Digital output (with optional open drain mode) on 3 output capable pins‬
‭●‬ ‭Button Debouncing (with optional pull-up) on all pins‬
‭●‬ ‭Pulse Timer (with optional pull up) on all pins‬
‭●‬ ‭Servo output on 3 output capable pins‬
‭●‬ ‭Analog Input (10 bit) on 3 A/D capable pins‬
‭●‬ ‭UART Receive (up to 115200 bps, one per chip) on any one of 4 pins‬
‭●‬ ‭UART Transmit (up to 115200 bps, one per chip) on any one of 3 output pins‬
‭●‬ ‭Protected Output on 3 output capable pins‬
‭●‬ ‭PWM Output on 3 output capable pins‬
‭●‬ ‭Rotary/Quadrature Encoder input (up to 2 encoders using 2 pins each)‬
‭●‬ ‭Watchdog Output on 3 output capable pins‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭3‬‭of‬‭41‬
‭V2.0.3_B‬

https://github.com/BroadwellConsultingInc/SerialWombat
https://broadwellconsultinginc.github.io/SerialWombat/sw4AB/index.html

‭Serial Wombat 4B Pinout‬

‭Shown above is the pinout of the Serial Wombat 4B chip. In this document pins 0 to 3 represent‬
‭the 4 I/O capable pins (pins 4 through 7 on the package pinout). Pin 0 is input only, and Pins‬
‭1-3 are Input/Output/Analog Input capable.‬

‭The Serial Wombat 4B chip can be powered from 3.0 to 5.5v. Lower voltages are possible, but‬
‭have not been tested to be compatible with 400kHz clock speeds.‬

‭The I2C bus can run at any voltage between 3.0v and the Serial Wombat chip supply voltage.‬
‭External pull-up resistors are required. 2200 ohm resistors are suggested. I2C clock‬
‭frequencies up to 400kHz are supported. Preprogrammed chips are available that respond to‬
‭I2C addresses 0x6C, 0x6D, 0x6E, and 0x6F. The Serial Wombat 4B chip utilizes I2C clock‬
‭stretching as defined in the I2C specification. Host systems controlling the Serial Wombat chip‬
‭must support clock stretching (note that the Raspberry Pi built in I2C does not support clock‬
‭stretching).‬

‭The Serial Wombat 4B chip is open-source firmware running on a Microchip PIC16F15214. See‬
‭the datasheet of that part for additional electrical specifications.‬

‭The Serial Wombat 4B utilizes an internal phase-locked-loop RC oscillator to generate its‬
‭internal clock. The nominal value of this clock is 32MHz, but may vary up to 2% based on‬
‭manufacturing variation (variation may increase beyond 2% below 0 deg. C or above 60 deg.‬
‭C). Since all timing done on the chip is based on this clock, absolute timing values such as‬
‭PWM frequency, servo pulse, pulse measurement, UART bits, etc may vary by up to 2%.‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭4‬‭of‬‭41‬
‭V2.0.3_B‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭5‬‭of‬‭41‬
‭V2.0.3_B‬

‭Arduino Library‬
‭An Arduino library is available that abstracts the communication protocol used by the Serial‬
‭Wombat family of chips. The examples shown in this document assume that the Arduino library‬
‭is used. The source code for the Serial Wombat Arduino library is available here:‬
‭https://github.com/BroadwellConsultingInc/SerialWombatArdLib‬

‭The library is heavily documented using Doxygen in-line comment documentation. A‬
‭compilation of this documentation is available here:‬

‭https://broadwellconsultinginc.github.io/SerialWombatArdLib/‬

‭The Arduino library can be installed using the Arduino library manager:‬

‭Some Arduino based interfaces are available directly from the‬‭SerialWombatChip class‬‭in the‬
‭library, such as‬‭pinMode‬‭,‬‭digitalWrite‬‭,‬‭digitalRead‬‭,‬‭analogWrite‬‭, and‬‭analogRead‬‭. These‬
‭provide a convenient way for Arduino programmers to get started quickly with the Serial‬
‭Wombat 4B chip. Over time, it is recommended that programmers transition to using the native‬
‭Serial Wombat interfaces shown in the examples and videos.‬

‭A getting started video which includes this procedure is available on YouTube:‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭6‬‭of‬‭41‬
‭V2.0.3_B‬

https://github.com/BroadwellConsultingInc/SerialWombatArdLib
https://broadwellconsultinginc.github.io/SerialWombatArdLib/
https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_chip.html
https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_chip.html#af03e88cc84ff6a978acc88e257398c87
https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_chip.html#a2e25c58f541b5215aafac0f599cc528f
https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_chip.html#adbec29f08e04205a790259240fada476
https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_chip.html#acde62f1ee0c84e8c482c1757333e6229
https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_chip.html#ada6e396dc420f1c9d08367240b54f959

Getting Started With the Serial Wombat 4B chip and Arduino using I2C

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭7‬‭of‬‭41‬
‭V2.0.3_B‬

https://youtu.be/UZOnq2FdrvU
https://youtu.be/UZOnq2FdrvU

‭Python / MicroPython Library‬
‭A Python and MicroPython library is available which provides equivalent interfaces to the ones‬
‭in the Arduino library. Most videos and examples shown are in C++ for Arduino, but are easily‬
‭ported to Python.‬

‭The library is available here:‬

‭https://github.com/BroadwellConsultingInc/SerialWombatMicroPython‬

‭An introductory video is available here:‬

‭https://youtu.be/bbBO5n_Ef-I‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭8‬‭of‬‭41‬
‭V2.0.3_B‬

https://github.com/BroadwellConsultingInc/SerialWombatMicroPython
https://youtu.be/bbBO5n_Ef-I

‭Circuit Construction‬
‭Before starting, consider subscribing to the Serial Wombat YouTube Channel:‬
‭https://www.youtube.com/@SerialWombat‬

‭and Instagram:‬
‭https://www.instagram.com/serialwombat/‬

‭When bugs are discovered or fixed or new firmware or library updates are made available a‬
‭post will be made on these platforms.‬

‭The Serial Wombat 4B chip requires power and ground to be attached to the pins as shown in‬
‭figure 1 above. Additionally, a 100nF ceramic decoupling capacitor must be connected across‬
‭power and ground. Appropriate capacitors are included with the Serial Wombat 4B kits created‬
‭by Broadwell Consulting Inc. sold on Amazon.‬

‭Each Serial Wombat 4B chip has a constant I2C address programmed in its firmware. In Serial‬
‭Wombat kits created by Broadwell Consulting Inc. the I2C address can be determined either by‬
‭a paint marking or by a decal on the chip:‬

‭Serial Wombat 4B kits created by Broadwell Consulting Inc. include user-applyable labels‬
‭which indicate pin functions and show the I2C address of the chip.‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭9‬‭of‬‭41‬
‭V2.0.3_B‬

https://www.youtube.com/@SerialWombat
https://www.instagram.com/serialwombat/

‭I2C lines should be pulled up with appropriate resistors. Appropriate values vary with‬
‭application and clock speed. 2200 ohm pull up resistors are suggested as a starting point.‬
‭Reliance on internal Arduino or other micros’ pull ups instead of discrete resistors may cause‬
‭communication errors.‬

‭The I2C pull up voltage may be lower than the Serial Wombat chip system voltage (e.g. 3.3V‬
‭I2C bus and 5.0V Serial Wombat chip voltage). This may prevent I2C operation at 400kHz‬
‭clock.‬

‭Multiple Serial Wombat Chips can be used in the same circuit as long as they (and all other I2C‬
‭devices) have unique addresses. Each chip should have its own 100uF capacitor.‬

‭The Serial Wombat 4B chip can function on input voltage from 3.0 to 5.5V. Input voltage as low‬
‭as 2.5V can be provided, but I2C frequency should not exceed 100kHz. I2C and I/O pin‬
‭voltages should not exceed the Serial Wombat 4B chip’s source voltage.‬

‭The Serial Wombat 4B chip requires a stable power supply to function properly. It is suggested‬
‭that loads which may cause supply instability (such as relays, servos, motors, or other loads‬
‭with large inductive or capacitive values) be powered from a separate power supply from that‬
‭used for the Serial Wombat 4B chip, as power fluctuations caused by these loads may trip the‬
‭Serial Wombat 4B chip’s internal low-voltage reset circuit.‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭10‬‭of‬‭41‬
‭V2.0.3_B‬

‭Pin Modes‬
‭There are multiple pin modes which can be selected for each pin.‬

‭Pin 0 supports only digital input modes (digital input, pulse timer, Button Debouncing, UART RX,‬
‭Quadrature encoder).‬

‭Pins 1-3 support digital input modes, digital output modes (digital output, servo, PWM, UART‬
‭TX, protected output, watchdog), and Analog Input mode.‬

‭Digital Input Modes‬

‭Digital GPIO Input Pin Mode‬
‭The Digital Input Pin mode allows the host to determine if the pin is logic high or logic low.‬
‭Inputs are Schmitt Trigger inputs with a low value of 0.2 x System Voltage and high value of 0.8‬
‭x System Voltage. See the PIC16F15214 datasheet for more information on logic levels.‬

‭Digital inputs can be configured to use internal pull up resistors within the chip.‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭11‬‭of‬‭41‬
‭V2.0.3_B‬

‭Debounced Input Pin Mode‬

‭Debounced Input pin mode is designed to facilitate button and other switch style inputs which‬
‭may oscillate before settling to a constant value.‬

‭The Debounced Input pin mode monitors an input pin 1000 times per second and reports back a‬
‭value only after it has stabilized for a specified period of time.‬

‭The Debounced Input pin mode also counts debounced transitions and records how long in‬
‭milliseconds the pin has been in the present state. This allows easy creation of user interfaces‬
‭or pulse counters without the need to constantly query the Serial Wombat chip.‬

‭The Debounced Input pin mode allows inversion of the signal so that inputs can report “true”‬
‭when the input is low, such as when the pin is connected to ground through a button. This can‬
‭make interfaces that produce a low input when active more intuitive to process.‬

‭The Debounced Input pin mode can enable an internal pull up resistor in the Serial Wombat chip‬
‭which allows a typical button or switch to be used with no additional components when‬
‭connected to ground.‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭12‬‭of‬‭41‬
‭V2.0.3_B‬

‭A wrapper class is available on Arduino which can increment or decrement a variable at‬
‭increasing speeds based on how long a button is held down.‬

‭A video tutorial on this pin mode is available here:‬
‭https://www.youtube.com/watch?v=R1KM0J2Ug-M‬

‭Here’s an Arduino example of the Debounced Input pin mode from the Arduino library‬
‭examples:‬

‭#include‬‭<‬‭SerialWombat‬‭.‬‭h‬‭>‬

‭SerialWombatChip‬‭sw;‬ ‭//Declare a Serial Wombat‬
‭SerialWombatDebouncedInput‬‭redButton(sw);‬
‭SerialWombatDebouncedInput‬‭greenButton(sw);‬

‭// This example is explained in a video tutorial at:‬‭https://youtu.be/R1KM0J2Ug-M‬

‭void‬‭setup‬‭() {‬
‭// put your setup code here, to run once:‬

‭{‬‭//I2C Initialization‬
‭Wire‬‭.‬‭begin‬‭();‬
‭sw‬‭.‬‭begin‬‭(‬‭Wire‬‭,‬‭0x6C);‬ ‭//Initialize the Serial‬‭Wombat library to use the primary I2C‬

‭port, SerialWombat is address 6C.‬
‭}‬

‭redButton‬‭.‬‭begin‬‭(0);‬
‭greenButton‬‭.‬‭begin‬‭(1);‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭13‬‭of‬‭41‬
‭V2.0.3_B‬

https://www.youtube.com/watch?v=R1KM0J2Ug-M
https://www.youtube.com/watch?v=R1KM0J2Ug-M

‭Serial‬‭.‬‭begin‬‭(115200);‬
‭}‬

‭void‬‭clearTerminal()‬
‭{‬
‭Serial‬‭.‬‭write‬‭(27);‬ ‭// ESC command‬
‭Serial‬‭.‬‭print‬‭(‬‭"[2J"‬‭);‬ ‭// clear screen command‬
‭Serial‬‭.‬‭write‬‭(27);‬
‭Serial‬‭.‬‭print‬‭(‬‭"[H"‬‭);‬ ‭// cursor to home command‬

‭}‬

‭int‬‭greenTransitions‬‭=‬‭0;‬
‭int‬‭redTransitions‬‭=‬‭0;‬

‭void‬‭loop‬‭() {‬
‭clearTerminal();‬

‭redButton‬‭.‬‭readTransitionsState‬‭();‬
‭redTransitions‬‭+=‬‭redButton‬‭.‬‭transitions‬‭;‬

‭greenButton‬‭.‬‭readTransitionsState‬‭();‬
‭greenTransitions‬‭+=‬‭greenButton‬‭.‬‭transitions‬‭;‬

‭Serial‬‭.‬‭print‬‭(greenTransitions);‬
‭Serial‬‭.‬‭print‬‭(‬‭" "‬‭);‬
‭Serial‬‭.‬‭println‬‭(greenButton‬‭.‬‭readDurationInTrueState_mS());‬

‭Serial‬‭.‬‭print‬‭(redTransitions);‬
‭Serial‬‭.‬‭print‬‭(‬‭" "‬‭);‬
‭Serial‬‭.‬‭println‬‭(redButton‬‭.‬‭readDurationInTrueState_mS());‬

‭delay‬‭(50);‬

‭}‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭14‬‭of‬‭41‬
‭V2.0.3_B‬

‭Pulse Timer Pin Mode‬
‭The Serial Wombat Pulse Timer pin mode is useful for timing pulses such as RC Servo pulses,‬
‭or reading PWM frequency and duty cycle.‬

‭The Serial Wombat Pulse Timer pin mode keeps track of the length of the most recent complete‬
‭high segment, the most recent complete low segment, and the number of pulses measured.‬

‭The Serial Wombat chip can measure pulses in either millisecond or microsecond units. The‬
‭user should select the correct units based upon pulse length. Measurements with a maximum‬
‭value of less than 65535uS should use microsecond mode. Measurements with a maximum‬
‭value longer than 65535 uS should use millisecond mode.‬

‭This pin mode has a 1uS precision and 2% accuracy (due to internal FRC variation from part to‬
‭part).‬

‭Warning:‬‭Care must be taken when using this pinmode‬‭with high frequency (> 5 kHz) signals‬
‭or pins that may be left floating (without pull-up enabled) on the Serial Wombat 4B chip because‬
‭the Serial Wombat 4B chip uses an interrupt internally to capture transition timestamps.‬
‭Excessively frequent pin transitions may cause the interrupt handler to starve the main‬
‭processing loop, impacting function of all pin modes and communications.‬

‭The Serial Wombat Protocol and Arduino library supports requesting both high and low times in‬
‭a single transaction. This allows the most recent high and low times to be read together, which‬
‭is important when calculating a PWM duty cycle. However, either the high time or low time may‬
‭be the most recently measured value depending on when the request is made which may cause‬
‭variation in duty cycle or frequency calculation for quickly changing PWM values.‬

‭The number of measured pulses increments for each high/low combination. By reading this‬
‭value twice over a given period of time, the host can calculate an approximate frequency of a‬
‭signal. The measured pulses value overflows from 65535 to 0 without notice.‬

‭A hardware overflow flag is available which indicates if pulse transitions are occurring more‬
‭frequently than the Serial Wombat 4B chip’s hardware can measure them, leading to inaccurate‬
‭measurements. An exact frequency at which this occurs cannot be specified, as it varies‬
‭depending on how many pins are configured to the Pulse Timer pin modes, and the aggregate‬
‭number of pulses per second across all of those pins. Only pins which are configured to Pulse‬
‭Timer pin mode contribute to interrupt loading.‬

‭A video tutorial on this pin mode is available here:‬

‭https://www.youtube.com/watch?v=YtQWUub9gYw‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭15‬‭of‬‭41‬
‭V2.0.3_B‬

‭Here’s an Arduino example of the Pulse Timer pin mode from the Arduino library examples‬
‭which reads the high time of 4 channels of an R/C servo receiver:‬
‭#include‬‭<‬‭SerialWombat‬‭.‬‭h‬‭>‬

‭SerialWombatChip‬‭sw;‬ ‭//Declare a Serial Wombat‬‭chip‬
‭SerialWombatPulseTimer‬‭steering(sw);‬
‭SerialWombatPulseTimer‬‭throttle(sw);‬
‭SerialWombatPulseTimer‬‭button(sw);‬
‭SerialWombatPulseTimer‬‭thumbSwitch(sw);‬

‭// This example is explained in a video tutorial at:‬‭https://youtu.be/YtQWUub9gYw‬

‭void‬‭setup‬‭() {‬
‭// put your setup code here, to run once:‬

‭{‬‭//I2C Initialization‬
‭Wire‬‭.‬‭begin‬‭();‬
‭sw‬‭.‬‭begin‬‭(‬‭Wire‬‭,‬‭0x6C);‬ ‭//Initialize the Serial‬‭Wombat library to use the primary I2C port,‬

‭SerialWombat is address 6C.‬
‭}‬

‭steering‬‭.‬‭begin‬‭(0);‬
‭throttle‬‭.‬‭begin‬‭(1);‬
‭button‬‭.‬‭begin‬‭(2);‬
‭thumbSwitch‬‭.‬‭begin‬‭(3);‬

‭Serial‬‭.‬‭begin‬‭(115200);‬
‭}‬

‭void‬‭clearTerminal()‬
‭{‬

‭Serial‬‭.‬‭write‬‭(27);‬ ‭// ESC command‬
‭Serial‬‭.‬‭print‬‭(‬‭"[2J"‬‭);‬ ‭// clear screen command‬
‭Serial‬‭.‬‭write‬‭(27);‬
‭Serial‬‭.‬‭print‬‭(‬‭"[H"‬‭);‬ ‭// cursor to home command‬

‭}‬

‭int‬‭i;‬
‭void‬‭loop‬‭() {‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭16‬‭of‬‭41‬
‭V2.0.3_B‬

https://www.youtube.com/watch?v=YtQWUub9gYw

‭clearTerminal();‬
‭Serial‬‭.‬‭println‬‭(steering‬‭.‬‭readHighCounts‬‭());‬
‭Serial‬‭.‬‭println‬‭(throttle‬‭.‬‭readHighCounts‬‭());‬
‭Serial‬‭.‬‭println‬‭(button‬‭.‬‭readHighCounts‬‭());‬
‭Serial‬‭.‬‭println‬‭(thumbSwitch‬‭.‬‭readHighCounts‬‭());‬

‭delay‬‭(50);‬

‭}‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭17‬‭of‬‭41‬
‭V2.0.3_B‬

‭UART Receive Pin Mode‬
‭The UART Receive Pin mode allows the Serial Wombat 4B chip to receive UART data which‬
‭can then be transferred back to the host over I2C. The Serial Wombat 4B chip can support 1‬
‭UART input pin at a time. The UART Transmit and Receive pin modes must communicate at‬
‭the same baud rate.‬

‭UART Format of 8 bits, no parity and 1 stop bit is required. Baud rates of‬
‭300,1200,2400,4800,9600,19200,38400,57600 and 115200 bits per second are supported.‬

‭The UART pin mode may have limitations compared to a UART integrated into the host. When‬
‭using higher baud rates the host must keep up with the incoming data to prevent data loss. The‬
‭Serial Wombat Protocol is effectively half duplex when communicating over I2C between the‬
‭host and the Serial Wombat chip. Using the Serial Wombat 4B chip’s capability of running at‬
‭400kHz I2C bus speed will increase the maximum throughput of the UART pin mode.‬

‭The SerialWombat 4B Chip has an onboard 128 byte buffer for UART reception to allow the‬
‭host to do other things in addition to monitoring the UART interface.‬

‭On Arduino the UART Receive pin mode wrapper inherits from the Stream class allowing a‬
‭Serial Wombat chip based UART to be interfaced using the same methods as accessing a‬
‭UART integrated into the host.‬

‭A video tutorial of the Serial Wombat 4B chip’s UART bridge capabilities is available here:‬

‭https://youtu.be/C1FjcaiBYZs‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭18‬‭of‬‭41‬
‭V2.0.3_B‬

https://youtu.be/C1FjcaiBYZs

‭Quadrature / Rotary Encoder Pin Mode‬
‭A class that uses two Serial Wombat input pins to read quadrature encoder input.‬

‭The Serial Wombat Quadrature Encoder Pin Mode configures two pins on the Serial Wombat‬
‭chip to work together to read quadrature encoder inputs.‬
‭By offloading the reading of an encoder to the Serial Wombat chip, it makes it easy for the host‬
‭to track multiple encoders at once. The host need only periodically retrieve the net change in‬
‭rotary encoder position from the Serial Wombat chip rather than monitoring for every signal‬
‭change.‬

‭The quadrature encoder is capable of running in either polled interrupt/DMA driven modes.‬
‭Polled mode is recommended for manual inputs such as rotary encoder knobs. It polls at 1 kHz‬
‭which is fast enough for most applications.‬

‭Interrupt driven mode on the Serial Wombat 4A/4B is capable of correctly decoding very fast‬
‭signals. However, the signals need to be properly filtered in order to eliminate any bouncing.‬

‭The SerialWombatQuadEnc can make use of the Serial Wombat chip's built in pull-up resistors‬
‭to make connecting a rotary encoder knob very simple. Debouncing is available which prevents‬
‭additional transitions from being measured for a specified number of mS after a transition.‬

‭Rotational direction measurement can be changed by switching the "pin" and "second pin"‬
‭parameters in the begin call.‬

‭The reported position can be changed on low to high transitions of "pin", high to low transitions,‬
‭or both transitions. This allows knobs that make and break connection on each click/detent and‬
‭knobs that either make or break connection on each detent to report one change per detent to‬
‭the host.‬
‭The default mode for simple initialization is to measure both, which will result in 2 increments‬
‭per detent for encoders that make and break connection on each detent.‬

‭Warning‬
‭Care must be taken in interrupt mode on Serial Wombat 4A/4B chips when using this pinmode‬
‭with high frequency (> 5 kHz) signals or pins that may be left floating on the Serial Wombat 4A /‬
‭4B because the Serial Wombat uses an interrupt internally to capture transitions between state‬
‭machine updates. Excessively frequent pin transitions may cause the interrupt handler to starve‬
‭the main processing loop, impacting function of all pin modes and communications.‬
‭The Serial Wombat chip can be queried for overflow frames. If overflow frames are occuring,‬
‭then the system is overloaded.‬

‭The Serial Wombat 4B chips can measure a maximum of 8 transitions per mS across all pulse‬
‭input pins. More frequent transitions than this may result in pin mode malfunction.‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭19‬‭of‬‭41‬
‭V2.0.3_B‬

‭A video tutorial of the Serial Wombat 4B chip’s Quadrature Encoder capabilities is available‬
‭here:‬

‭https://youtu.be/_wO8cOada3w‬

‭The following code shows Initializing two Quadrature/Rotary encoders on a Serial Wombat chip‬
‭and reading them periodically.‬

‭#include‬‭<‬‭SerialWombat‬‭.‬‭h‬‭>‬

‭SerialWombatChip‬‭sw6C;‬ ‭//Declare a Serial Wombat chip‬
‭SerialWombatQuadEnc‬‭qeBasic(sw6C);‬
‭SerialWombatQuadEnc‬‭qeWithPullUps(sw6C);‬

‭// This example is explained in a video tutorial at:‬‭https://youtu.be/_wO8cOada3w‬

‭void‬‭setup‬‭() {‬
‭// put your setup code here, to run once:‬

‭{‬‭//I2C Initialization‬
‭Wire‬‭.‬‭begin‬‭();‬
‭sw6C‬‭.‬‭begin‬‭(‬‭Wire‬‭,‬‭0x6C);‬‭//Initialize the Serial Wombat library to use the primary I2C port,‬

‭SerialWombat is address 6C‬
‭}‬
‭qeBasic‬‭.‬‭begin‬‭(0‬‭,‬‭1);‬ ‭// Initialize a QE on pins 0 and 1‬
‭qeWithPullUps‬‭.‬‭begin‬‭(2‬‭,‬‭3);‬ ‭// Initialize a QE on pins 2 and 3‬
‭Serial‬‭.‬‭begin‬‭(115200);‬

‭}‬

‭void‬‭loop‬‭() {‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭20‬‭of‬‭41‬
‭V2.0.3_B‬

https://youtu.be/_wO8cOada3w

‭Serial‬‭.‬‭print‬‭(qeBasic‬‭.‬‭read‬‭());‬
‭Serial‬‭.‬‭print‬‭(‬‭" "‬‭);‬
‭Serial‬‭.‬‭print‬‭(qeWithPullUps‬‭.‬‭read‬‭());‬
‭Serial‬‭.‬‭println‬‭();‬
‭delay‬‭(50);‬

‭}‬

‭Output Modes‬

‭Digital Output Pin Mode‬
‭The Digital Output pin mode allows the host to set the pin high or low. The maximum current‬
‭sunk or sourced per pin should not exceed 25mA. See the PIC16F15214 datasheet for detailed‬
‭electrical specifications.‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭21‬‭of‬‭41‬
‭V2.0.3_B‬

‭Servo Output Pin Mode‬

‭The Serial Wombat 4B chip can drive up to 3 standard RC servos with 1uS precision. This‬
‭significantly improves on the 180 available positions available through a standard Arduino servo‬
‭call.‬

‭The Servo pin mode outputs a pulse every 20mS. The minimum and maximum pulse lengths‬
‭are specified when the pin mode is initialized (544uS and 2400uS maximum by default).‬

‭The host then provides a 16 bit value between 0 and 65535 which scales the pulse between‬
‭minimum and maximum length.‬

‭A reverse option can be specified at initialization which causes 0 to generate a maximum length‬
‭pulse, and 65535 to generate a minimum length pulse. This is useful to make operation intuitive‬
‭in cases where the servo moves opposite of what “feels” like the natural direction for an‬
‭increasing value.‬

‭The Arduino class which wraps this functionality also provides an Arduino compatible interface‬
‭which takes a value of 0 to 180 rather than 0 to 65535 to scale between minimum and maximum‬
‭pulses.‬

‭The Arduino Class is documented here:‬
‭https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_servo.html‬

‭Here’s an Arduino example of the Servo pin mode from the Arduino library examples which‬
‭declares two servos and controls one using the 16 bit interface, and the other using the Arduino‬
‭compatible interface.‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭22‬‭of‬‭41‬
‭V2.0.3_B‬

https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_servo.html

‭#include‬‭<‬‭SerialWombat‬‭.‬‭h‬‭>‬

‭SerialWombatChip‬‭sw;‬ ‭//Declare a Serial Wombat‬‭chip‬
‭SerialWombatServo‬‭ContinuousServo(sw);‬ ‭// Declare‬‭a Servo on pin 2 of Serial Wombat sw‬
‭SerialWombatServo‬‭StandardServo(sw);‬ ‭// Declare‬‭a Servo on pin 3 of Serial Wombat sw‬

‭// A video tutorial is available which explains this example in detail at:‬
‭https://youtu.be/WiciAtS1ng0‬
‭void‬‭setup‬‭() {‬

‭{‬‭//I2C Initialization‬
‭Wire‬‭.‬‭begin‬‭();‬
‭sw‬‭.‬‭begin‬‭(‬‭Wire‬‭,‬‭0x6C);‬ ‭//Initialize the Serial‬‭Wombat library to use the primary I2C port,‬

‭This SerialWombat's address is 6C.‬
‭}‬
‭ContinuousServo‬‭.‬‭attach‬‭(2‬‭,‬‭500‬‭,‬‭2500‬‭,‬‭true‬‭);‬‭// Initialize‬‭a servo on pin 2, 500uS minimum pulse,‬

‭2500 us Maximum pulse, reversed‬
‭StandardServo‬‭.‬‭attach‬‭(3);‬ ‭// Initialize a servo‬‭on pin 3 using Arduino equivalent default‬

‭values‬

‭}‬

‭void‬‭loop‬‭() {‬

‭// put your main code here, to run repeatedly:‬

‭ContinuousServo‬‭.‬‭write‬‭(30);‬ ‭// Takes a number‬‭from 0 to 180‬
‭StandardServo‬‭.‬‭write16bit‬‭(5500);‬ ‭// Takes a number‬‭from 0 to 65535: Higher resolution‬
‭delay‬‭(5000);‬
‭ContinuousServo‬‭.‬‭write‬‭(140);‬
‭StandardServo‬‭.‬‭write16bit‬‭(50000);‬
‭delay‬‭(5000);‬

‭}‬

‭A video demonstrating the Servo pin mode is available here:‬
‭https://www.youtube.com/watch?v=WiciAtS1ng0‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭23‬‭of‬‭41‬
‭V2.0.3_B‬

https://www.youtube.com/watch?v=WiciAtS1ng0

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭24‬‭of‬‭41‬
‭V2.0.3_B‬

‭PWM Pin Mode‬
‭The PWM Pin mode allows the Serial Wombat 4B chip to generate a PWM output at a number‬
‭of different frequencies. The PWM output hardware can generate PWM duty cycles with 10-bit‬
‭accuracy (The 16-bit requested duty cycle is rounded to the nearest 10-bit value). The Serial‬
‭Wombat 4B chip can generate a different duty cycle on each of its 3 outputs. All outputs output‬
‭at the same frequency. Available frequencies are:‬
‭1 hz‬
‭2 hz‬
‭4 hz‬
‭8 hz‬
‭16 hz‬
‭32 hz‬
‭63 hz‬
‭125 hz‬
‭244 hz‬
‭976 hz‬
‭1952 hz‬
‭3900 hz‬
‭7800 hz‬
‭15625 hz‬
‭31250 hz‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭25‬‭of‬‭41‬
‭V2.0.3_B‬

‭UART Transmit Pin Mode‬
‭The UART Transmit Pin mode allows the Serial Wombat 4B chip to send UART data over I2C‬
‭from the host which can then be converted to UART output. The Serial Wombat 4B chip can‬
‭support 1 UART output pin at a time. The UART Transmit and Receive pin modes must‬
‭communicate at the same baud rate.‬

‭UART Format of 8 bits, no parity and 1 stop bit is required. Baud rates of‬
‭300,1200,2400,4800,9600,19200,38400,57600 and 115200 bits per second are supported.‬

‭A video tutorial of the Serial Wombat 4B chip’s UART bridge capabilities is available here:‬

‭https://youtu.be/C1FjcaiBYZs‬

‭The Serial Wombat 4B chip runs on the PIC16F15214 microcontroller. This microcontroller has‬
‭a published silicon bug which can cause the same byte to be sent twice when queued once.‬
‭This issue is believed to be limited to communication at 115200 bps on the Serial Wombat‬
‭firmware. A host-side workaround is available which prevents this bug from manifesting at the‬
‭expense of significantly lower total throughput. See this video for details:‬

‭https://youtu.be/CxmNPz6fW8E‬

‭The SerialWombat 4B Chip has an onboard 64 byte buffer for UART reception to allow the host‬
‭to queue up to 64 bytes to the chip. This is useful when sending at lower baud rates.‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭26‬‭of‬‭41‬
‭V2.0.3_B‬

https://youtu.be/C1FjcaiBYZs

‭On Arduino the UART Transmit pin mode wrapper inherits from the Stream class allowing a‬
‭Serial Wombat chip based UART to be interfaced using the same methods as accessing a‬
‭UART integrated into the host.‬

‭A video tutorial of the Serial Wombat 4B chip’s UART bridge capabilities is available here:‬
‭https://youtu.be/l-XiUQ6RXU0‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭27‬‭of‬‭41‬
‭V2.0.3_B‬

‭Protected Output Pin Mode‬
‭The Seria lWombt Protected Output pin mode is assigned to a Serial Wombat output pin. It‬
‭monitors another previously configured pin's public data, such as a digital I/O value or an‬
‭Analog input. If the monitored value does not meet expectations, then the protected pin‬
‭changes values to a configured state. This allows the Serial Wombat chip to constantly‬
‭verify a condition without the need for constant polling from the host device.‬

‭Warning:‬‭The Serial Wombat 4B chip’s Protected Output‬‭Pin Mode is intended to help prevent‬
‭accidental damage to hobby circuitry. The Serial Wombat chip and its associated libraries are‬
‭not designed for use in Safety Critical applications. The Serial Wombat chip should not be used‬
‭in situations where a malfunction or design defect could result in damage to property, economic‬
‭loss, or harm to living people or creatures.‬

‭The period of time that a mismatch must occur before going to the safe state‬
‭is configurable.‬

‭A video tutorial of the Serial Wombat 4B chip’s protected output capabilities is available here:‬
‭https://youtu.be/p8CO04C1q_Y‬

‭The Arduino class is documented here:‬
‭https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_protected_ou‬
‭tput.html‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭28‬‭of‬‭41‬
‭V2.0.3_B‬

https://youtu.be/p8CO04C1q_Y
https://youtu.be/p8CO04C1q_Y

‭Here’s an Arduino example where pin 3 is configured to monitor pin 1, which is configured as an‬
‭analog input. The protected output pin is configured to be high unless pin one is higher than‬
‭8000 for 10 mS, in which case it latches low until reset by the host.‬

‭#include‬‭<‬‭SerialWombat‬‭.‬‭h‬‭>‬

‭SerialWombatChip‬‭sw;‬ ‭//Declare a Serial Wombat‬‭chip‬

‭SerialWombatProtectedOutput‬‭swpo(sw);‬
‭SerialWombatAnalogInput‬‭Feedback(sw);‬

‭// This example is explained in a video tutorial at:‬‭https://youtu.be/p8CO04C1q_Y‬

‭void‬‭setup‬‭() {‬
‭// put your setup code here, to run once:‬

‭Serial‬‭.‬‭begin‬‭(115200);‬ ‭//Initialize Arduino Serial‬‭Port for terminal use‬

‭{‬‭//I2C Initialization‬
‭Wire‬‭.‬‭begin‬‭();‬
‭sw‬‭.‬‭begin‬‭(‬‭Wire‬‭,‬‭0x6C);‬ ‭//Initialize the Serial‬‭Wombat library to use the primary I2C port,‬

‭SerialWombat is address 6C.‬
‭}‬

‭swpo‬‭.‬‭begin‬‭(3‬‭,‬‭1);‬ ‭// Controlling pin 3. Feedback‬‭from pin 1.‬
‭Feedback‬‭.‬‭begin‬‭(1);‬ ‭// Begin analog reading on pin‬‭1‬

‭}‬

‭int‬‭i;‬
‭void‬‭loop‬‭() {‬

‭if‬‭(swpo‬‭.‬‭isInSafeState‬‭())‬
‭{‬
‭Serial‬‭.‬‭println‬‭(‬‭"Protected Output Fault Detected,‬‭Output set to Safe State!"‬‭);‬
‭}‬
‭if‬‭(i‬‭&‬‭0x01)‬
‭{‬

‭swpo‬‭.‬‭configure‬‭(‬‭PO_FAULT_IF_FEEDBACK_GREATER_THAN_EXPECTED‬‭,‬‭8000‬‭,‬‭10‬‭,‬‭SW_HIGH‬‭,‬‭SW_LOW‬‭);‬
‭Serial‬‭.‬‭println‬‭(‬‭"On"‬‭);‬

‭}‬
‭else‬
‭{‬

‭swpo‬‭.‬‭digitalWrite‬‭(‬‭LOW‬‭);‬
‭Serial‬‭.‬‭println‬‭(‬‭"Off"‬‭);‬

‭}‬

‭delay‬‭(100);‬
‭Serial‬‭.‬‭print‬‭(‬‭"counts at drain: "‬‭);‬
‭Serial‬‭.‬‭println‬‭(Feedback‬‭.‬‭readCounts‬‭());‬
‭Serial‬‭.‬‭print‬‭(Feedback‬‭.‬‭readVoltage_mV‬‭());‬
‭Serial‬‭.‬‭println‬‭(‬‭" mV"‬‭);‬
‭Serial‬‭.‬‭println‬‭();‬

‭delay‬‭(3000);‬
‭++‬‭i;‬

‭}‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭29‬‭of‬‭41‬
‭V2.0.3_B‬

‭Watchdog Pin Mode‬
‭The Serial Wombat Watchdog Pin Mode is designed to improve system reliability in case of‬
‭communications loss with the host device. This may be because the communications lines are‬
‭no longer functional (e.g. I2C bus locked up) or the host ceases to communicate (Such as when‬
‭an Arduino malfunctions due to issues allocating string memory).‬

‭Once enabled, the Serial Wombat Watchdog will change its output and optionally other Serial‬
‭Wombat outputs to predefined states and optionally reset the Serial Wombat itself if a new‬
‭Watchdog feeding message isn't received within a period of time specified in the initialization.‬

‭The output can be used to reset the host, for instance when connected to an Arduino reset pin,‬
‭or used to shut off an output. For instance, a motor controlled by a SerialWombatWatchdog pin‬
‭could be configured to turn off if the host doesn't periodically feed the watchdog.‬

‭A video tutorial is available:‬

‭https://youtu.be/fIObjmHmprY‬

‭Here’s an example where pin 2 of a Serial Wombat 4B chip is tied to the reset pin of an Arduino.‬
‭The Arduino chip is designed to malfunction, leaving it stuck in a loop. Eventually, the Serial‬
‭Wombat 4B pin will pull the Arduino’s reset pin due to not being serviced.‬

‭#include‬‭<‬‭SerialWombat‬‭.‬‭h‬‭>‬

‭SerialWombatChip‬‭sw;‬ ‭//Declare a Serial Wombat‬‭chip‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭30‬‭of‬‭41‬
‭V2.0.3_B‬

https://youtu.be/fIObjmHmprY

‭SerialWombatWatchdog‬‭Watchdog(sw);‬ ‭// Declare a Watchdog pin‬

‭// A video tutorial for this example is available at:‬‭https://youtu.be/fIObjmHmprY‬
‭void‬‭setup‬‭() {‬

‭{‬‭//I2C Initialization‬
‭Wire‬‭.‬‭begin‬‭();‬
‭sw‬‭.‬‭begin‬‭(‬‭Wire‬‭,‬‭0x6C);‬ ‭//Initialize the Serial‬‭Wombat library to use the primary I2C port,‬

‭This SerialWombat's address is 6C.‬
‭}‬
‭Watchdog‬‭.‬‭begin‬‭(2‬‭,‬ ‭// Start the watchdog on pin 2.‬

‭SW_INPUT‬‭,‬ ‭// Make the pin Input for normal operation‬
‭SW_LOW‬‭,‬ ‭// Make the pin go low on timeout‬
‭10000‬‭,‬ ‭// Timeout is 10 seconds‬
‭false‬‭);‬ ‭// The Serial Wombat won't self-reset on‬

‭timeout‬

‭Serial‬‭.‬‭begin‬‭(115200);‬
‭Serial‬‭.‬‭println‬‭();‬
‭Serial‬‭.‬‭println‬‭(‬‭"Setup Complete."‬‭);‬

‭}‬

‭// This flawed routine works well if A is a multiple of B, but‬
‭// acts badly otherwise because quotient is unsigned and rolls‬
‭// back to a big number if the subtraction goes negative.‬
‭// Some values, such as 60 / 7 eventually end up returning a‬
‭// (wrong) result as the rollover(s) end up eventually‬
‭// giving a number that is a multiple of B.‬
‭// others such as 60 / 8 stay trapped in the loop forever.‬
‭uint8_t‬‭DivideAByB(‬‭uint8_t‬‭A‬‭,‬‭uint8_t‬‭B)‬
‭{‬
‭uint8_t‬‭C‬‭=‬‭0;‬

‭while‬‭(A‬‭>‬‭0)‬
‭{‬
‭A‬‭=‬‭A‬‭-‬‭B;‬
‭++‬‭C;‬

‭}‬
‭return‬‭C;‬

‭}‬

‭int‬‭x‬‭=‬‭1;‬
‭void‬‭loop‬‭() {‬

‭// put your main code here, to run repeatedly:‬

‭Serial‬‭.‬‭println‬‭();‬
‭Serial‬‭.‬‭print‬‭(‬‭"60 / "‬‭);‬
‭Serial‬‭.‬‭print‬‭(x) ;‬
‭Serial‬‭.‬‭print‬‭(‬‭" = "‬‭);‬
‭Serial‬‭.‬‭println‬‭(DivideAByB(60‬‭,‬‭x));‬
‭++‬‭x;‬

‭Watchdog‬‭.‬‭updateResetCountdown‬‭(10000);‬‭// Reset‬‭the watchdog clock to 10 seconds‬
‭delay‬‭(1000);‬

‭}‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭31‬‭of‬‭41‬
‭V2.0.3_B‬

‭Analog Input Pin Mode‬

‭The Serial Wombat 4B chip can measure up to 3 separate analog inputs, plus its own source‬
‭voltage.‬

‭The Serial Wombat 4B firmware makes a new 10-bit measurement every 1mS. The pin state‬
‭machine also provides averaged and filtered values, and keeps track of the minimum and‬
‭maximum measurements.‬

‭Serial Wombat analog measurements are ratiometric, ranging from 0 to 65535 where 0 means‬
‭that the incoming voltage was equal (within the 10-bit resolution) to ground, and 65535 means‬
‭that the incoming voltage was equal (within the 10-bit resolution) to the Serial Wombat chip’s‬
‭source voltage. Because 0-65535 represents a 16 bits of resolution but the Serial Wombat 4B‬
‭chip’s A/D unit is only 10 bits, values will exhibit quantization in 64 count increments (e.g. the‬
‭raw results can be 0, 64, 128, 32768, 51200 … but not 7, 71, 132, 32784, 51213, etc). In the‬
‭case that the A/D reports a maximum value of 65472, this value is reported as 65535 (to be‬
‭consistent with using that value to represent positive maximum scale).‬

‭Averaged value is computed by adding 64 samples together. For some signals this may‬
‭effectively increase resolution depending on the amplitude and distribution of noise on the‬
‭signal. The average output updates every 64 samples, so it some latency is introduced by‬
‭using this value instead of the raw or filtered values.‬

‭Filtered value is computed by taking the previous filtered value times the filter constant + the‬
‭new value times 65536 minus the filter constant, then dividing the sum by 65536. Given the‬
‭1kHz sampling frequency, the following‬‭cut-off (3dB‬‭down) frequencies can be achieved with‬
‭constant values:‬

‭●‬ ‭0.5 Hz 65417‬
‭●‬ ‭1 Hz 65298‬
‭●‬ ‭2 Hz 65062‬
‭●‬ ‭5 Hz 64358‬
‭●‬ ‭10 Hz 63202‬

‭Filtering adds lag. The higher the filter constant value, the longer it takes for the filter to settle when‬

‭given a steady input.‬

‭Averaging and filtering are particularly useful on an expansion ADC device such as the Serial‬
‭Wombat 4B because they allow a higher effective sampling rate than what can be achieved over‬
‭I2C when also communicating with other devices.‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭32‬‭of‬‭41‬
‭V2.0.3_B‬

‭Minimum and maximum tracking record the lowest and highest seen raw A/D conversion value‬
‭for that pin. These values can optionally be cleared when read in the same communication‬
‭request. Note that noisy signals can generate minimum or maximum values that are not‬
‭qualitatively representative of the signal.‬

‭The Serial Wombat 4B chip is capable of measuring an internal reference voltage which in turn‬
‭can be used to infer the system voltage. The Arduino library has functions to retrieve the‬
‭system voltage, as well as output A/D conversions in mV rather than counts using the measured‬
‭system voltage as the high value for the ratiometric conversion.‬

‭Input impedance for A/D inputs should be 5 kOhm or less. See the PIC16F15214 datasheet for‬
‭additional performance and electrical characteristics of the A/D converter circuit.‬

‭A video tutorial of the Serial Wombat 4B chip’s analog capabilities is available here:‬
‭https://www.youtube.com/watch?v=_EKlrEVaEhg‬

‭The Arduino class is documented here:‬
‭https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_analog_input‬
‭.html‬

‭Here’s an Arduino example of the using 3 pins to monitor two potentiometers and a TMP32‬
‭temperature sensor using the Analog Input pin mode:‬

‭#include‬‭<‬‭SerialWombat‬‭.‬‭h‬‭>‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭33‬‭of‬‭41‬
‭V2.0.3_B‬

https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_analog_input.html
https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_analog_input.html

‭SerialWombatChip‬‭sw6C;‬ ‭//Declare a Serial Wombat‬
‭SerialWombatAnalogInput‬‭leftPot(sw6C);‬ ‭//5k linear‬‭Pot‬
‭SerialWombatAnalogInput‬‭rightPot(sw6C);‬‭//5k linear‬‭Pot‬
‭SerialWombatAnalogInput‬‭temperatureSensor(sw6C);‬

‭// This example is explained in a video tutorial at:‬‭https://youtu.be/_EKlrEVaEhg‬

‭void‬‭setup‬‭() {‬
‭// put your setup code here, to run once:‬

‭{‬‭//I2C Initialization‬
‭Wire‬‭.‬‭begin‬‭();‬
‭digitalWrite‬‭(A5‬‭,‬‭LOW‬‭);‬ ‭//Arduino Uno Specific.‬ ‭Turn off I2C pull up‬
‭digitalWrite‬‭(A4‬‭,‬‭LOW‬‭);‬ ‭//Arduino Uno Specific.‬ ‭Turn off I2C pull up‬
‭sw6C‬‭.‬‭begin‬‭(‬‭Wire‬‭,‬‭0x6C);‬‭//Initialize the Serial‬‭Wombat library to use the primary I2C port,‬

‭SerialWombat is address 6C‬
‭}‬
‭leftPot‬‭.‬‭begin‬‭(3);‬
‭rightPot‬‭.‬‭begin‬‭(1);‬
‭temperatureSensor‬‭.‬‭begin‬‭(2‬‭,‬‭64‬‭,‬‭65417);‬‭// Wombat pin‬‭2, average 64 samples, .5 Hz Low Pass filter‬
‭Serial‬‭.‬‭begin‬‭(115200);‬

‭}‬

‭void‬‭loop‬‭() {‬

‭Serial‬‭.‬‭print‬‭(‬‭"Source V: "‬‭);‬
‭uint16_t‬‭supplyVoltage‬‭=‬‭sw6C‬‭.‬‭readSupplyVoltage_mV‬‭();‬
‭Serial‬‭.‬‭print‬‭(supplyVoltage);‬
‭Serial‬‭.‬‭print‬‭(‬‭"mV Left Pot: "‬‭);‬
‭Serial‬‭.‬‭print‬‭(leftPot‬‭.‬‭readCounts‬‭());‬
‭Serial‬‭.‬‭print‬‭(‬‭" "‬‭);‬

‭uint16_t‬‭leftVoltage‬‭=‬‭leftPot‬‭.‬‭readVoltage_mV‬‭();‬
‭Serial‬‭.‬‭print‬‭(leftVoltage);‬
‭Serial‬‭.‬‭print‬‭(‬‭"mV Right Pot:"‬‭);‬

‭Serial‬‭.‬‭print‬‭(rightPot‬‭.‬‭readCounts‬‭());‬
‭Serial‬‭.‬‭print‬‭(‬‭" "‬‭);‬
‭uint16_t‬‭rightVoltage‬‭=‬‭rightPot‬‭.‬‭readVoltage_mV‬‭();‬
‭Serial‬‭.‬‭print‬‭(rightVoltage);‬

‭Serial‬‭.‬‭print‬‭(‬‭"mV T:"‬‭);‬

‭Serial‬‭.‬‭print‬‭(temperatureSensor‬‭.‬‭readCounts‬‭());‬
‭Serial‬‭.‬‭print‬‭(‬‭" "‬‭);‬
‭Serial‬‭.‬‭print‬‭(temperatureSensor‬‭.‬‭readVoltage_mV‬‭());‬
‭Serial‬‭.‬‭print‬‭(‬‭"mV "‬‭);‬

‭float‬‭tempSensor_mV‬‭=‬‭temperatureSensor‬‭.‬‭readAveraged_mV‬‭();‬

‭//See datasheet for TMP36 Temperature sensor for‬‭conversion‬
‭float‬‭temperature‬‭=‬‭(tempSensor_mV‬‭-‬‭750)‬‭/‬‭10.0‬‭+‬‭25;‬

‭Serial‬‭.‬‭print‬‭(temperature);‬
‭Serial‬‭.‬‭print‬‭(‬‭" deg C "‬‭);‬

‭Serial‬‭.‬‭println‬‭();‬
‭delay‬‭(200);‬

‭}‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭34‬‭of‬‭41‬
‭V2.0.3_B‬

‭Sleep Mode‬

‭The Serial Wombat 4B chip is typically running firmware at 32MHz internally, leading to a‬
‭constant consumption of a few mA of current. The Serial Wombat 4B chip can be configured to‬
‭enter Sleep mode in which execution of the executive stops, and the Serial Wombat 4B chip‬
‭waits for an I2C command to wake and resume operation. In Sleep mode the current is‬
‭typically in the low microamps range, dependent on the configuration of the chip when Sleep‬
‭was commanded. Note that the chip stops execution of all functions, including protected output‬
‭and PWM generation, when Sleep is commanded. The state of PWM and UART outputs (high‬
‭or low) is not specified at this point. Any outputs should be put in a known state by the host‬
‭prior to entering Sleep mode.‬

‭A video on using Sleep Mode is available here:‬

‭https://youtu.be/jVkQ1YoqcpI‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭35‬‭of‬‭41‬
‭V2.0.3_B‬

https://youtu.be/jVkQ1YoqcpI

‭Unique Identifier‬
‭Each Serial Wombat 4B chip has a unique, unchangeable identifier programmed into the‬
‭microcontroller when it is manufactured by Microchip. A demonstration of this capability is‬
‭shown in this video:‬

‭https://youtu.be/IHTcKyXT_2Q‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭36‬‭of‬‭41‬
‭V2.0.3_B‬

https://youtu.be/IHTcKyXT_2Q

‭Protocol Analyzer‬
‭A protocol analyzer is available to monitor and decode Serial Wombat commands sent over an‬
‭I2C or UART bus. This analyzer runs on top of the Saleae Logic software package and is‬
‭available for download through that application. This tool can be useful in debugging projects‬
‭that include the Serial Wombat 4B chip.‬

‭A video is available here:‬

‭https://youtu.be/cL7kUm9qjvU‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭37‬‭of‬‭41‬
‭V2.0.3_B‬

https://youtu.be/cL7kUm9qjvU

‭Troubleshooting‬

‭Step 1: Check the basics‬
‭General Stuff:‬

‭●‬ ‭Make sure your chip has a stable, in-range power supply and that the included‬
‭capacitors are attached across the power and ground pins. If you can, verify power‬
‭voltage using a multimeter‬

‭●‬ ‭Make sure your chip is connected properly. Ensure that the chip is in the proper‬
‭orientation (power pins are near the notch) and that a 100uF capacitor is connected‬
‭across Vdd and GND.‬

‭●‬ ‭Disconnect any loads (such as motors, servos, or relays) from your circuit. Frequently‬
‭these devices can sufficiently disrupt the power supply such that the Serial Wombat 4B‬
‭chip’s internal low-voltage-reset circuit triggers. It is suggested that inductive loads not‬
‭be driven directly from the same supply driving logic portions of the circuit.‬

‭●‬ ‭If you’re using a decal on the Serial Wombat chip, is it oriented in the correct direction?‬
‭Make sure the black notch at one end of the decal matches up with the black dot on the‬
‭chip‬

‭●‬ ‭Make sure you’re using the latest Arduino / C# / Python library. It’s possible your issue is‬
‭fixed in a newer version than you have‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭38‬‭of‬‭41‬
‭V2.0.3_B‬

‭●‬ ‭In Arduino, consider registering the default error handler. This provides helpful‬
‭information (particularly on the 18AB) about configuration errors.‬

‭I2C related Stuff‬
‭●‬ ‭If connected using I2C, make sure you have pull up resistors on SCL and SDA (don’t‬

‭rely on internal pull ups on your chip, they’re typically out of spec for I2C).‬

‭●‬ ‭Make sure your SDA line from the Arduino or other host is attached to the SDA line on‬
‭the Serial Wombat Chip. Same for SCL. Did you accidentally cross them?‬

‭●‬ ‭Does the Serial Wombat chip finder sketch in the Arduino Examples / Serial Wombat‬
‭directory find the Serial Wombat chip? This should always work if your hardware is‬
‭setup correctly‬

‭●‬ ‭In your sketch, do you call begin on Wire then on the Serial Wombat chip?‬

‭●‬ ‭Can you verify proper I2C traffic operation using a Logic analyzer? See this video for a‬
‭cheap way to do this.‬‭https://youtu.be/cL7kUm9qjvU‬

‭Step 2: Check the YouTube video and comments‬
‭Go to the‬‭Broadwell Consulting Inc. YouTube channel‬‭and take a look at the Serial Wombat‬
‭playlist. Watch the video for the task you’re trying to achieve, and check the comments to see if‬
‭any other users have asked a question about your issue.‬
‭If not, then leave a comment with your question on the video that best matches what you’re‬
‭trying to do.‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭39‬‭of‬‭41‬
‭V2.0.3_B‬

https://youtu.be/cL7kUm9qjvU
https://www.youtube.com/channel/UCG_6rQBf_OG-WLd7tRDCQQQ

‭Additional Resources:‬

‭YouTube‬
‭The Broadwell Consulting Inc.‬‭YouTube Channel‬‭has‬‭many helpful tutorial Videos which walk‬
‭through how to use the various Serial Wombat chip pin modes and features.‬

‭Arduino Library‬
‭The Serial Wombat Arduino Library supports the Serial Wombat 4B and Serial Wombat‬
‭18AB chips.‬
‭The library documentation is available on github.io‬‭. Click on the classes tab to see‬
‭documentation and interfaces for individual pin modes.‬
‭The‬‭Serial Wombat Arduino Library is available on‬‭GitHub‬‭. This is a good place to log‬
‭an issue if you find a bug in the Arduino library or want to request new features. Please‬
‭don’t use the issue system for support requests.‬

‭Serial Wombat 4B firmware‬
‭The‬‭Serial Wombat 4B source code documentation and‬‭protocol definition‬‭are available‬
‭on github.io .‬
‭The‬‭Serial Wombat 4B firmware source code is available‬‭on GitHub‬‭.‬

‭Support and Technical Assistance‬
‭If the above troubleshooting and guides don’t solve your problem, contact Broadwell Consulting‬
‭at‬‭help@serialwombat.com‬‭for support. Support requests sent in over email may take a couple‬
‭of days to respond. Priority is given to questions asked in public forums such as on the‬
‭YouTube channel so that others can benefit from the answers.‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭40‬‭of‬‭41‬
‭V2.0.3_B‬

https://www.youtube.com/channel/UCG_6rQBf_OG-WLd7tRDCQQQ/playlists
https://broadwellconsultinginc.github.io/SerialWombatArdLib/
https://github.com/BroadwellConsultingInc/SerialWombatArdLib
https://broadwellconsultinginc.github.io/SerialWombat/sw4AB/index.html
https://github.com/BroadwellConsultingInc/SerialWombat
mailto:help@serialwombat.com

‭Revision History‬

‭Version‬ ‭Changes‬

‭V2.0.3_A‬ ‭Initial Version‬

‭V2.0.3_B‬ ‭Added Quadrature Encoder Pin Mode, Updated Title page‬

‭Serial Wombat 4B Chip User Guide‬ ‭Page‬‭41‬‭of‬‭41‬
‭V2.0.3_B‬

