
 Serial Wombat 4B Chip User Guide
 Version 2.0.3_A (Corresponds to Serial Wombat 4B firmware version 2.0.3)

 An Open Source Project

 Created by
 Broadwell Consulting Inc.

 Table of contents:

 An Open Source Project ... 1
 Table of contents: .. 2
 Overview ... 2
 Arduino Library .. 6
 Python / MicroPython Library ... 8
 Circuit Construction .. 9
 Pin Modes ... 11
 Digital Input Modes .. 11

 Digital GPIO Input Pin Mode ... 11
 Debounced Input Pin Mode .. 12
 Pulse Timer Pin Mode ... 15
 UART Receive Pin Mode ... 18
 Quadrature / Rotary Encoder Pin Mode .. 19

 Output Modes ... 21
 Digital Output Pin Mode .. 21
 Servo Output Pin Mode ... 22
 PWM Pin Mode .. 25
 UART Transmit Pin Mode .. 26
 Protected Output Pin Mode .. 28
 Watchdog Pin Mode ... 30

 Analog Input Pin Mode .. 32
 Sleep Mode ... 35
 Unique Identifier .. 36
 Protocol Analyzer .. 37
 Troubleshooting ... 38

 Step 1: Check the basics .. 38
 Step 2: Check the YouTube video and comments .. 39

 Additional Resources: ... 40
 YouTube ... 40
 Arduino Library .. 40
 Serial Wombat 4B firmware ... 40

 Support and Technical Assistance .. 40
 Revision History .. 41

 Overview

 Serial Wombat 4B Chip User Guide Page 2 of 41
 V2.0.3_B

 The Serial Wombat 4B chip family is designed to add smart I/O capability to Arduino or other
 systems capable of communicating over I2C. Each Serial Wombat 4B chip adds up to 4 I/O
 pins (1 is input only, and 3 are Input/Output Capable).

 The Serial Wombat 4B firmware is open source under MIT license available here:

 https://github.com/BroadwellConsultingInc/SerialWombat

 The Serial Wombat 4B chip is a peripheral chip that is commanded by a host device. It is not a
 device that runs downloaded user code directly. An Arduino library is available to control the
 Serial Wombat 4B chip from an Arduino host. The I2C communication protocol is available for
 user that wish to interface to the Serial Wombat 4B chip from other platforms.

 The Serial Wombat 4B firmware is heavily commented using Doxygen compatible commenting.
 The compiled Doxygen documentation is available here:
 https://broadwellconsultinginc.github.io/SerialWombat/sw4AB/index.html
 This documentation exposes the internal workings of the Serial Wombat chip and its protocol.
 This documentation is typically not needed in order to use the Serial Wombat 4B chip from
 Arduino due to the availability of a wrapper library.

 Each Serial Wombat pin runs an individual state machine every 1mS allowing that pin to solve
 common embedded systems problems. Pin modes can be mixed and matched (for example,
 two debounced inputs, an analog input, and a servo output).

 The Serial Wombat 4B chip supports the following pin modes:

 ● Digital Input (with optional pull-up) on all pins
 ● Digital output (with optional open drain mode) on 3 output capable pins
 ● Button Debouncing (with optional pull-up) on all pins
 ● Pulse Timer (with optional pull up) on all pins
 ● Servo output on 3 output capable pins
 ● Analog Input (10 bit) on 3 A/D capable pins
 ● UART Receive (up to 115200 bps, one per chip) on any one of 4 pins
 ● UART Transmit (up to 115200 bps, one per chip) on any one of 3 output pins
 ● Protected Output on 3 output capable pins
 ● PWM Output on 3 output capable pins
 ● Rotary/Quadrature Encoder input (up to 2 encoders using 2 pins each)
 ● Watchdog Output on 3 output capable pins

 Serial Wombat 4B Chip User Guide Page 3 of 41
 V2.0.3_B

https://github.com/BroadwellConsultingInc/SerialWombat
https://broadwellconsultinginc.github.io/SerialWombat/sw4AB/index.html

 Serial Wombat 4B Pinout

 Shown above is the pinout of the Serial Wombat 4B chip. In this document pins 0 to 3 represent
 the 4 I/O capable pins (pins 4 through 7 on the package pinout). Pin 0 is input only, and Pins
 1-3 are Input/Output/Analog Input capable.

 The Serial Wombat 4B chip can be powered from 3.0 to 5.5v. Lower voltages are possible, but
 have not been tested to be compatible with 400kHz clock speeds.

 The I2C bus can run at any voltage between 3.0v and the Serial Wombat chip supply voltage.
 External pull-up resistors are required. 2200 ohm resistors are suggested. I2C clock
 frequencies up to 400kHz are supported. Preprogrammed chips are available that respond to
 I2C addresses 0x6C, 0x6D, 0x6E, and 0x6F. The Serial Wombat 4B chip utilizes I2C clock
 stretching as defined in the I2C specification. Host systems controlling the Serial Wombat chip
 must support clock stretching (note that the Raspberry Pi built in I2C does not support clock
 stretching).

 The Serial Wombat 4B chip is open-source firmware running on a Microchip PIC16F15214. See
 the datasheet of that part for additional electrical specifications.

 The Serial Wombat 4B utilizes an internal phase-locked-loop RC oscillator to generate its
 internal clock. The nominal value of this clock is 32MHz, but may vary up to 2% based on
 manufacturing variation (variation may increase beyond 2% below 0 deg. C or above 60 deg.
 C). Since all timing done on the chip is based on this clock, absolute timing values such as
 PWM frequency, servo pulse, pulse measurement, UART bits, etc may vary by up to 2%.

 Serial Wombat 4B Chip User Guide Page 4 of 41
 V2.0.3_B

 Serial Wombat 4B Chip User Guide Page 5 of 41
 V2.0.3_B

 Arduino Library
 An Arduino library is available that abstracts the communication protocol used by the Serial
 Wombat family of chips. The examples shown in this document assume that the Arduino library
 is used. The source code for the Serial Wombat Arduino library is available here:
 https://github.com/BroadwellConsultingInc/SerialWombatArdLib

 The library is heavily documented using Doxygen in-line comment documentation. A
 compilation of this documentation is available here:

 https://broadwellconsultinginc.github.io/SerialWombatArdLib/

 The Arduino library can be installed using the Arduino library manager:

 Some Arduino based interfaces are available directly from the SerialWombatChip class in the
 library, such as pinMode , digitalWrite , digitalRead , analogWrite , and analogRead . These
 provide a convenient way for Arduino programmers to get started quickly with the Serial
 Wombat 4B chip. Over time, it is recommended that programmers transition to using the native
 Serial Wombat interfaces shown in the examples and videos.

 A getting started video which includes this procedure is available on YouTube:

 Serial Wombat 4B Chip User Guide Page 6 of 41
 V2.0.3_B

https://github.com/BroadwellConsultingInc/SerialWombatArdLib
https://broadwellconsultinginc.github.io/SerialWombatArdLib/
https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_chip.html
https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_chip.html#af03e88cc84ff6a978acc88e257398c87
https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_chip.html#a2e25c58f541b5215aafac0f599cc528f
https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_chip.html#adbec29f08e04205a790259240fada476
https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_chip.html#acde62f1ee0c84e8c482c1757333e6229
https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_chip.html#ada6e396dc420f1c9d08367240b54f959

Getting Started With the Serial Wombat 4B chip and Arduino using I2C

 Serial Wombat 4B Chip User Guide Page 7 of 41
 V2.0.3_B

https://youtu.be/UZOnq2FdrvU
https://youtu.be/UZOnq2FdrvU

 Python / MicroPython Library
 A Python and MicroPython library is available which provides equivalent interfaces to the ones
 in the Arduino library. Most videos and examples shown are in C++ for Arduino, but are easily
 ported to Python.

 The library is available here:

 https://github.com/BroadwellConsultingInc/SerialWombatMicroPython

 An introductory video is available here:

 https://youtu.be/bbBO5n_Ef-I

 Serial Wombat 4B Chip User Guide Page 8 of 41
 V2.0.3_B

https://github.com/BroadwellConsultingInc/SerialWombatMicroPython
https://youtu.be/bbBO5n_Ef-I

 Circuit Construction
 Before starting, consider subscribing to the Serial Wombat YouTube Channel:
 https://www.youtube.com/@SerialWombat

 and Instagram:
 https://www.instagram.com/serialwombat/

 When bugs are discovered or fixed or new firmware or library updates are made available a
 post will be made on these platforms.

 The Serial Wombat 4B chip requires power and ground to be attached to the pins as shown in
 figure 1 above. Additionally, a 100nF ceramic decoupling capacitor must be connected across
 power and ground. Appropriate capacitors are included with the Serial Wombat 4B kits created
 by Broadwell Consulting Inc. sold on Amazon.

 Each Serial Wombat 4B chip has a constant I2C address programmed in its firmware. In Serial
 Wombat kits created by Broadwell Consulting Inc. the I2C address can be determined either by
 a paint marking or by a decal on the chip:

 Serial Wombat 4B kits created by Broadwell Consulting Inc. include user-applyable labels
 which indicate pin functions and show the I2C address of the chip.

 Serial Wombat 4B Chip User Guide Page 9 of 41
 V2.0.3_B

https://www.youtube.com/@SerialWombat
https://www.instagram.com/serialwombat/

 I2C lines should be pulled up with appropriate resistors. Appropriate values vary with
 application and clock speed. 2200 ohm pull up resistors are suggested as a starting point.
 Reliance on internal Arduino or other micros’ pull ups instead of discrete resistors may cause
 communication errors.

 The I2C pull up voltage may be lower than the Serial Wombat chip system voltage (e.g. 3.3V
 I2C bus and 5.0V Serial Wombat chip voltage). This may prevent I2C operation at 400kHz
 clock.

 Multiple Serial Wombat Chips can be used in the same circuit as long as they (and all other I2C
 devices) have unique addresses. Each chip should have its own 100uF capacitor.

 The Serial Wombat 4B chip can function on input voltage from 3.0 to 5.5V. Input voltage as low
 as 2.5V can be provided, but I2C frequency should not exceed 100kHz. I2C and I/O pin
 voltages should not exceed the Serial Wombat 4B chip’s source voltage.

 The Serial Wombat 4B chip requires a stable power supply to function properly. It is suggested
 that loads which may cause supply instability (such as relays, servos, motors, or other loads
 with large inductive or capacitive values) be powered from a separate power supply from that
 used for the Serial Wombat 4B chip, as power fluctuations caused by these loads may trip the
 Serial Wombat 4B chip’s internal low-voltage reset circuit.

 Serial Wombat 4B Chip User Guide Page 10 of 41
 V2.0.3_B

 Pin Modes
 There are multiple pin modes which can be selected for each pin.

 Pin 0 supports only digital input modes (digital input, pulse timer, Button Debouncing, UART RX,
 Quadrature encoder).

 Pins 1-3 support digital input modes, digital output modes (digital output, servo, PWM, UART
 TX, protected output, watchdog), and Analog Input mode.

 Digital Input Modes

 Digital GPIO Input Pin Mode
 The Digital Input Pin mode allows the host to determine if the pin is logic high or logic low.
 Inputs are Schmitt Trigger inputs with a low value of 0.2 x System Voltage and high value of 0.8
 x System Voltage. See the PIC16F15214 datasheet for more information on logic levels.

 Digital inputs can be configured to use internal pull up resistors within the chip.

 Serial Wombat 4B Chip User Guide Page 11 of 41
 V2.0.3_B

 Debounced Input Pin Mode

 Debounced Input pin mode is designed to facilitate button and other switch style inputs which
 may oscillate before settling to a constant value.

 The Debounced Input pin mode monitors an input pin 1000 times per second and reports back a
 value only after it has stabilized for a specified period of time.

 The Debounced Input pin mode also counts debounced transitions and records how long in
 milliseconds the pin has been in the present state. This allows easy creation of user interfaces
 or pulse counters without the need to constantly query the Serial Wombat chip.

 The Debounced Input pin mode allows inversion of the signal so that inputs can report “true”
 when the input is low, such as when the pin is connected to ground through a button. This can
 make interfaces that produce a low input when active more intuitive to process.

 The Debounced Input pin mode can enable an internal pull up resistor in the Serial Wombat chip
 which allows a typical button or switch to be used with no additional components when
 connected to ground.

 Serial Wombat 4B Chip User Guide Page 12 of 41
 V2.0.3_B

 A wrapper class is available on Arduino which can increment or decrement a variable at
 increasing speeds based on how long a button is held down.

 A video tutorial on this pin mode is available here:
 https://www.youtube.com/watch?v=R1KM0J2Ug-M

 Here’s an Arduino example of the Debounced Input pin mode from the Arduino library
 examples:

 #include < SerialWombat . h >

 SerialWombatChip sw; //Declare a Serial Wombat
 SerialWombatDebouncedInput redButton(sw);
 SerialWombatDebouncedInput greenButton(sw);

 // This example is explained in a video tutorial at: https://youtu.be/R1KM0J2Ug-M

 void setup () {
 // put your setup code here, to run once:

 { //I2C Initialization
 Wire . begin ();
 sw . begin (Wire , 0x6C); //Initialize the Serial Wombat library to use the primary I2C

 port, SerialWombat is address 6C.
 }

 redButton . begin (0);
 greenButton . begin (1);

 Serial Wombat 4B Chip User Guide Page 13 of 41
 V2.0.3_B

https://www.youtube.com/watch?v=R1KM0J2Ug-M
https://www.youtube.com/watch?v=R1KM0J2Ug-M

 Serial . begin (115200);
 }

 void clearTerminal()
 {
 Serial . write (27); // ESC command
 Serial . print ("[2J"); // clear screen command
 Serial . write (27);
 Serial . print ("[H"); // cursor to home command

 }

 int greenTransitions = 0;
 int redTransitions = 0;

 void loop () {
 clearTerminal();

 redButton . readTransitionsState ();
 redTransitions += redButton . transitions ;

 greenButton . readTransitionsState ();
 greenTransitions += greenButton . transitions ;

 Serial . print (greenTransitions);
 Serial . print (" ");
 Serial . println (greenButton . readDurationInTrueState_mS());

 Serial . print (redTransitions);
 Serial . print (" ");
 Serial . println (redButton . readDurationInTrueState_mS());

 delay (50);

 }

 Serial Wombat 4B Chip User Guide Page 14 of 41
 V2.0.3_B

 Pulse Timer Pin Mode
 The Serial Wombat Pulse Timer pin mode is useful for timing pulses such as RC Servo pulses,
 or reading PWM frequency and duty cycle.

 The Serial Wombat Pulse Timer pin mode keeps track of the length of the most recent complete
 high segment, the most recent complete low segment, and the number of pulses measured.

 The Serial Wombat chip can measure pulses in either millisecond or microsecond units. The
 user should select the correct units based upon pulse length. Measurements with a maximum
 value of less than 65535uS should use microsecond mode. Measurements with a maximum
 value longer than 65535 uS should use millisecond mode.

 This pin mode has a 1uS precision and 2% accuracy (due to internal FRC variation from part to
 part).

 Warning: Care must be taken when using this pinmode with high frequency (> 5 kHz) signals
 or pins that may be left floating (without pull-up enabled) on the Serial Wombat 4B chip because
 the Serial Wombat 4B chip uses an interrupt internally to capture transition timestamps.
 Excessively frequent pin transitions may cause the interrupt handler to starve the main
 processing loop, impacting function of all pin modes and communications.

 The Serial Wombat Protocol and Arduino library supports requesting both high and low times in
 a single transaction. This allows the most recent high and low times to be read together, which
 is important when calculating a PWM duty cycle. However, either the high time or low time may
 be the most recently measured value depending on when the request is made which may cause
 variation in duty cycle or frequency calculation for quickly changing PWM values.

 The number of measured pulses increments for each high/low combination. By reading this
 value twice over a given period of time, the host can calculate an approximate frequency of a
 signal. The measured pulses value overflows from 65535 to 0 without notice.

 A hardware overflow flag is available which indicates if pulse transitions are occurring more
 frequently than the Serial Wombat 4B chip’s hardware can measure them, leading to inaccurate
 measurements. An exact frequency at which this occurs cannot be specified, as it varies
 depending on how many pins are configured to the Pulse Timer pin modes, and the aggregate
 number of pulses per second across all of those pins. Only pins which are configured to Pulse
 Timer pin mode contribute to interrupt loading.

 A video tutorial on this pin mode is available here:

 https://www.youtube.com/watch?v=YtQWUub9gYw

 Serial Wombat 4B Chip User Guide Page 15 of 41
 V2.0.3_B

 Here’s an Arduino example of the Pulse Timer pin mode from the Arduino library examples
 which reads the high time of 4 channels of an R/C servo receiver:
 #include < SerialWombat . h >

 SerialWombatChip sw; //Declare a Serial Wombat chip
 SerialWombatPulseTimer steering(sw);
 SerialWombatPulseTimer throttle(sw);
 SerialWombatPulseTimer button(sw);
 SerialWombatPulseTimer thumbSwitch(sw);

 // This example is explained in a video tutorial at: https://youtu.be/YtQWUub9gYw

 void setup () {
 // put your setup code here, to run once:

 { //I2C Initialization
 Wire . begin ();
 sw . begin (Wire , 0x6C); //Initialize the Serial Wombat library to use the primary I2C port,

 SerialWombat is address 6C.
 }

 steering . begin (0);
 throttle . begin (1);
 button . begin (2);
 thumbSwitch . begin (3);

 Serial . begin (115200);
 }

 void clearTerminal()
 {

 Serial . write (27); // ESC command
 Serial . print ("[2J"); // clear screen command
 Serial . write (27);
 Serial . print ("[H"); // cursor to home command

 }

 int i;
 void loop () {

 Serial Wombat 4B Chip User Guide Page 16 of 41
 V2.0.3_B

https://www.youtube.com/watch?v=YtQWUub9gYw

 clearTerminal();
 Serial . println (steering . readHighCounts ());
 Serial . println (throttle . readHighCounts ());
 Serial . println (button . readHighCounts ());
 Serial . println (thumbSwitch . readHighCounts ());

 delay (50);

 }

 Serial Wombat 4B Chip User Guide Page 17 of 41
 V2.0.3_B

 UART Receive Pin Mode
 The UART Receive Pin mode allows the Serial Wombat 4B chip to receive UART data which
 can then be transferred back to the host over I2C. The Serial Wombat 4B chip can support 1
 UART input pin at a time. The UART Transmit and Receive pin modes must communicate at
 the same baud rate.

 UART Format of 8 bits, no parity and 1 stop bit is required. Baud rates of
 300,1200,2400,4800,9600,19200,38400,57600 and 115200 bits per second are supported.

 The UART pin mode may have limitations compared to a UART integrated into the host. When
 using higher baud rates the host must keep up with the incoming data to prevent data loss. The
 Serial Wombat Protocol is effectively half duplex when communicating over I2C between the
 host and the Serial Wombat chip. Using the Serial Wombat 4B chip’s capability of running at
 400kHz I2C bus speed will increase the maximum throughput of the UART pin mode.

 The SerialWombat 4B Chip has an onboard 128 byte buffer for UART reception to allow the
 host to do other things in addition to monitoring the UART interface.

 On Arduino the UART Receive pin mode wrapper inherits from the Stream class allowing a
 Serial Wombat chip based UART to be interfaced using the same methods as accessing a
 UART integrated into the host.

 A video tutorial of the Serial Wombat 4B chip’s UART bridge capabilities is available here:

 https://youtu.be/C1FjcaiBYZs

 Serial Wombat 4B Chip User Guide Page 18 of 41
 V2.0.3_B

https://youtu.be/C1FjcaiBYZs

 Quadrature / Rotary Encoder Pin Mode
 A class that uses two Serial Wombat input pins to read quadrature encoder input.

 The Serial Wombat Quadrature Encoder Pin Mode configures two pins on the Serial Wombat
 chip to work together to read quadrature encoder inputs.
 By offloading the reading of an encoder to the Serial Wombat chip, it makes it easy for the host
 to track multiple encoders at once. The host need only periodically retrieve the net change in
 rotary encoder position from the Serial Wombat chip rather than monitoring for every signal
 change.

 The quadrature encoder is capable of running in either polled interrupt/DMA driven modes.
 Polled mode is recommended for manual inputs such as rotary encoder knobs. It polls at 1 kHz
 which is fast enough for most applications.

 Interrupt driven mode on the Serial Wombat 4A/4B is capable of correctly decoding very fast
 signals. However, the signals need to be properly filtered in order to eliminate any bouncing.

 The SerialWombatQuadEnc can make use of the Serial Wombat chip's built in pull-up resistors
 to make connecting a rotary encoder knob very simple. Debouncing is available which prevents
 additional transitions from being measured for a specified number of mS after a transition.

 Rotational direction measurement can be changed by switching the "pin" and "second pin"
 parameters in the begin call.

 The reported position can be changed on low to high transitions of "pin", high to low transitions,
 or both transitions. This allows knobs that make and break connection on each click/detent and
 knobs that either make or break connection on each detent to report one change per detent to
 the host.
 The default mode for simple initialization is to measure both, which will result in 2 increments
 per detent for encoders that make and break connection on each detent.

 Warning
 Care must be taken in interrupt mode on Serial Wombat 4A/4B chips when using this pinmode
 with high frequency (> 5 kHz) signals or pins that may be left floating on the Serial Wombat 4A /
 4B because the Serial Wombat uses an interrupt internally to capture transitions between state
 machine updates. Excessively frequent pin transitions may cause the interrupt handler to starve
 the main processing loop, impacting function of all pin modes and communications.
 The Serial Wombat chip can be queried for overflow frames. If overflow frames are occuring,
 then the system is overloaded.

 The Serial Wombat 4B chips can measure a maximum of 8 transitions per mS across all pulse
 input pins. More frequent transitions than this may result in pin mode malfunction.

 Serial Wombat 4B Chip User Guide Page 19 of 41
 V2.0.3_B

 A video tutorial of the Serial Wombat 4B chip’s Quadrature Encoder capabilities is available
 here:

 https://youtu.be/_wO8cOada3w

 The following code shows Initializing two Quadrature/Rotary encoders on a Serial Wombat chip
 and reading them periodically.

 #include < SerialWombat . h >

 SerialWombatChip sw6C; //Declare a Serial Wombat chip
 SerialWombatQuadEnc qeBasic(sw6C);
 SerialWombatQuadEnc qeWithPullUps(sw6C);

 // This example is explained in a video tutorial at: https://youtu.be/_wO8cOada3w

 void setup () {
 // put your setup code here, to run once:

 { //I2C Initialization
 Wire . begin ();
 sw6C . begin (Wire , 0x6C); //Initialize the Serial Wombat library to use the primary I2C port,

 SerialWombat is address 6C
 }
 qeBasic . begin (0 , 1); // Initialize a QE on pins 0 and 1
 qeWithPullUps . begin (2 , 3); // Initialize a QE on pins 2 and 3
 Serial . begin (115200);

 }

 void loop () {

 Serial Wombat 4B Chip User Guide Page 20 of 41
 V2.0.3_B

https://youtu.be/_wO8cOada3w

 Serial . print (qeBasic . read ());
 Serial . print (" ");
 Serial . print (qeWithPullUps . read ());
 Serial . println ();
 delay (50);

 }

 Output Modes

 Digital Output Pin Mode
 The Digital Output pin mode allows the host to set the pin high or low. The maximum current
 sunk or sourced per pin should not exceed 25mA. See the PIC16F15214 datasheet for detailed
 electrical specifications.

 Serial Wombat 4B Chip User Guide Page 21 of 41
 V2.0.3_B

 Servo Output Pin Mode

 The Serial Wombat 4B chip can drive up to 3 standard RC servos with 1uS precision. This
 significantly improves on the 180 available positions available through a standard Arduino servo
 call.

 The Servo pin mode outputs a pulse every 20mS. The minimum and maximum pulse lengths
 are specified when the pin mode is initialized (544uS and 2400uS maximum by default).

 The host then provides a 16 bit value between 0 and 65535 which scales the pulse between
 minimum and maximum length.

 A reverse option can be specified at initialization which causes 0 to generate a maximum length
 pulse, and 65535 to generate a minimum length pulse. This is useful to make operation intuitive
 in cases where the servo moves opposite of what “feels” like the natural direction for an
 increasing value.

 The Arduino class which wraps this functionality also provides an Arduino compatible interface
 which takes a value of 0 to 180 rather than 0 to 65535 to scale between minimum and maximum
 pulses.

 The Arduino Class is documented here:
 https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_servo.html

 Here’s an Arduino example of the Servo pin mode from the Arduino library examples which
 declares two servos and controls one using the 16 bit interface, and the other using the Arduino
 compatible interface.

 Serial Wombat 4B Chip User Guide Page 22 of 41
 V2.0.3_B

https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_servo.html

 #include < SerialWombat . h >

 SerialWombatChip sw; //Declare a Serial Wombat chip
 SerialWombatServo ContinuousServo(sw); // Declare a Servo on pin 2 of Serial Wombat sw
 SerialWombatServo StandardServo(sw); // Declare a Servo on pin 3 of Serial Wombat sw

 // A video tutorial is available which explains this example in detail at:
 https://youtu.be/WiciAtS1ng0
 void setup () {

 { //I2C Initialization
 Wire . begin ();
 sw . begin (Wire , 0x6C); //Initialize the Serial Wombat library to use the primary I2C port,

 This SerialWombat's address is 6C.
 }
 ContinuousServo . attach (2 , 500 , 2500 , true); // Initialize a servo on pin 2, 500uS minimum pulse,

 2500 us Maximum pulse, reversed
 StandardServo . attach (3); // Initialize a servo on pin 3 using Arduino equivalent default

 values

 }

 void loop () {

 // put your main code here, to run repeatedly:

 ContinuousServo . write (30); // Takes a number from 0 to 180
 StandardServo . write16bit (5500); // Takes a number from 0 to 65535: Higher resolution
 delay (5000);
 ContinuousServo . write (140);
 StandardServo . write16bit (50000);
 delay (5000);

 }

 A video demonstrating the Servo pin mode is available here:
 https://www.youtube.com/watch?v=WiciAtS1ng0

 Serial Wombat 4B Chip User Guide Page 23 of 41
 V2.0.3_B

https://www.youtube.com/watch?v=WiciAtS1ng0

 Serial Wombat 4B Chip User Guide Page 24 of 41
 V2.0.3_B

 PWM Pin Mode
 The PWM Pin mode allows the Serial Wombat 4B chip to generate a PWM output at a number
 of different frequencies. The PWM output hardware can generate PWM duty cycles with 10-bit
 accuracy (The 16-bit requested duty cycle is rounded to the nearest 10-bit value). The Serial
 Wombat 4B chip can generate a different duty cycle on each of its 3 outputs. All outputs output
 at the same frequency. Available frequencies are:
 1 hz
 2 hz
 4 hz
 8 hz
 16 hz
 32 hz
 63 hz
 125 hz
 244 hz
 976 hz
 1952 hz
 3900 hz
 7800 hz
 15625 hz
 31250 hz

 Serial Wombat 4B Chip User Guide Page 25 of 41
 V2.0.3_B

 UART Transmit Pin Mode
 The UART Transmit Pin mode allows the Serial Wombat 4B chip to send UART data over I2C
 from the host which can then be converted to UART output. The Serial Wombat 4B chip can
 support 1 UART output pin at a time. The UART Transmit and Receive pin modes must
 communicate at the same baud rate.

 UART Format of 8 bits, no parity and 1 stop bit is required. Baud rates of
 300,1200,2400,4800,9600,19200,38400,57600 and 115200 bits per second are supported.

 A video tutorial of the Serial Wombat 4B chip’s UART bridge capabilities is available here:

 https://youtu.be/C1FjcaiBYZs

 The Serial Wombat 4B chip runs on the PIC16F15214 microcontroller. This microcontroller has
 a published silicon bug which can cause the same byte to be sent twice when queued once.
 This issue is believed to be limited to communication at 115200 bps on the Serial Wombat
 firmware. A host-side workaround is available which prevents this bug from manifesting at the
 expense of significantly lower total throughput. See this video for details:

 https://youtu.be/CxmNPz6fW8E

 The SerialWombat 4B Chip has an onboard 64 byte buffer for UART reception to allow the host
 to queue up to 64 bytes to the chip. This is useful when sending at lower baud rates.

 Serial Wombat 4B Chip User Guide Page 26 of 41
 V2.0.3_B

https://youtu.be/C1FjcaiBYZs

 On Arduino the UART Transmit pin mode wrapper inherits from the Stream class allowing a
 Serial Wombat chip based UART to be interfaced using the same methods as accessing a
 UART integrated into the host.

 A video tutorial of the Serial Wombat 4B chip’s UART bridge capabilities is available here:
 https://youtu.be/l-XiUQ6RXU0

 Serial Wombat 4B Chip User Guide Page 27 of 41
 V2.0.3_B

 Protected Output Pin Mode
 The Seria lWombt Protected Output pin mode is assigned to a Serial Wombat output pin. It
 monitors another previously configured pin's public data, such as a digital I/O value or an
 Analog input. If the monitored value does not meet expectations, then the protected pin
 changes values to a configured state. This allows the Serial Wombat chip to constantly
 verify a condition without the need for constant polling from the host device.

 Warning: The Serial Wombat 4B chip’s Protected Output Pin Mode is intended to help prevent
 accidental damage to hobby circuitry. The Serial Wombat chip and its associated libraries are
 not designed for use in Safety Critical applications. The Serial Wombat chip should not be used
 in situations where a malfunction or design defect could result in damage to property, economic
 loss, or harm to living people or creatures.

 The period of time that a mismatch must occur before going to the safe state
 is configurable.

 A video tutorial of the Serial Wombat 4B chip’s protected output capabilities is available here:
 https://youtu.be/p8CO04C1q_Y

 The Arduino class is documented here:
 https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_protected_ou
 tput.html

 Serial Wombat 4B Chip User Guide Page 28 of 41
 V2.0.3_B

https://youtu.be/p8CO04C1q_Y
https://youtu.be/p8CO04C1q_Y

 Here’s an Arduino example where pin 3 is configured to monitor pin 1, which is configured as an
 analog input. The protected output pin is configured to be high unless pin one is higher than
 8000 for 10 mS, in which case it latches low until reset by the host.

 #include < SerialWombat . h >

 SerialWombatChip sw; //Declare a Serial Wombat chip

 SerialWombatProtectedOutput swpo(sw);
 SerialWombatAnalogInput Feedback(sw);

 // This example is explained in a video tutorial at: https://youtu.be/p8CO04C1q_Y

 void setup () {
 // put your setup code here, to run once:

 Serial . begin (115200); //Initialize Arduino Serial Port for terminal use

 { //I2C Initialization
 Wire . begin ();
 sw . begin (Wire , 0x6C); //Initialize the Serial Wombat library to use the primary I2C port,

 SerialWombat is address 6C.
 }

 swpo . begin (3 , 1); // Controlling pin 3. Feedback from pin 1.
 Feedback . begin (1); // Begin analog reading on pin 1

 }

 int i;
 void loop () {

 if (swpo . isInSafeState ())
 {
 Serial . println ("Protected Output Fault Detected, Output set to Safe State!");
 }
 if (i & 0x01)
 {

 swpo . configure (PO_FAULT_IF_FEEDBACK_GREATER_THAN_EXPECTED , 8000 , 10 , SW_HIGH , SW_LOW);
 Serial . println ("On");

 }
 else
 {

 swpo . digitalWrite (LOW);
 Serial . println ("Off");

 }

 delay (100);
 Serial . print ("counts at drain: ");
 Serial . println (Feedback . readCounts ());
 Serial . print (Feedback . readVoltage_mV ());
 Serial . println (" mV");
 Serial . println ();

 delay (3000);
 ++ i;

 }

 Serial Wombat 4B Chip User Guide Page 29 of 41
 V2.0.3_B

 Watchdog Pin Mode
 The Serial Wombat Watchdog Pin Mode is designed to improve system reliability in case of
 communications loss with the host device. This may be because the communications lines are
 no longer functional (e.g. I2C bus locked up) or the host ceases to communicate (Such as when
 an Arduino malfunctions due to issues allocating string memory).

 Once enabled, the Serial Wombat Watchdog will change its output and optionally other Serial
 Wombat outputs to predefined states and optionally reset the Serial Wombat itself if a new
 Watchdog feeding message isn't received within a period of time specified in the initialization.

 The output can be used to reset the host, for instance when connected to an Arduino reset pin,
 or used to shut off an output. For instance, a motor controlled by a SerialWombatWatchdog pin
 could be configured to turn off if the host doesn't periodically feed the watchdog.

 A video tutorial is available:

 https://youtu.be/fIObjmHmprY

 Here’s an example where pin 2 of a Serial Wombat 4B chip is tied to the reset pin of an Arduino.
 The Arduino chip is designed to malfunction, leaving it stuck in a loop. Eventually, the Serial
 Wombat 4B pin will pull the Arduino’s reset pin due to not being serviced.

 #include < SerialWombat . h >

 SerialWombatChip sw; //Declare a Serial Wombat chip

 Serial Wombat 4B Chip User Guide Page 30 of 41
 V2.0.3_B

https://youtu.be/fIObjmHmprY

 SerialWombatWatchdog Watchdog(sw); // Declare a Watchdog pin

 // A video tutorial for this example is available at: https://youtu.be/fIObjmHmprY
 void setup () {

 { //I2C Initialization
 Wire . begin ();
 sw . begin (Wire , 0x6C); //Initialize the Serial Wombat library to use the primary I2C port,

 This SerialWombat's address is 6C.
 }
 Watchdog . begin (2 , // Start the watchdog on pin 2.

 SW_INPUT , // Make the pin Input for normal operation
 SW_LOW , // Make the pin go low on timeout
 10000 , // Timeout is 10 seconds
 false); // The Serial Wombat won't self-reset on

 timeout

 Serial . begin (115200);
 Serial . println ();
 Serial . println ("Setup Complete.");

 }

 // This flawed routine works well if A is a multiple of B, but
 // acts badly otherwise because quotient is unsigned and rolls
 // back to a big number if the subtraction goes negative.
 // Some values, such as 60 / 7 eventually end up returning a
 // (wrong) result as the rollover(s) end up eventually
 // giving a number that is a multiple of B.
 // others such as 60 / 8 stay trapped in the loop forever.
 uint8_t DivideAByB(uint8_t A , uint8_t B)
 {
 uint8_t C = 0;

 while (A > 0)
 {
 A = A - B;
 ++ C;

 }
 return C;

 }

 int x = 1;
 void loop () {

 // put your main code here, to run repeatedly:

 Serial . println ();
 Serial . print ("60 / ");
 Serial . print (x) ;
 Serial . print (" = ");
 Serial . println (DivideAByB(60 , x));
 ++ x;

 Watchdog . updateResetCountdown (10000); // Reset the watchdog clock to 10 seconds
 delay (1000);

 }

 Serial Wombat 4B Chip User Guide Page 31 of 41
 V2.0.3_B

 Analog Input Pin Mode

 The Serial Wombat 4B chip can measure up to 3 separate analog inputs, plus its own source
 voltage.

 The Serial Wombat 4B firmware makes a new 10-bit measurement every 1mS. The pin state
 machine also provides averaged and filtered values, and keeps track of the minimum and
 maximum measurements.

 Serial Wombat analog measurements are ratiometric, ranging from 0 to 65535 where 0 means
 that the incoming voltage was equal (within the 10-bit resolution) to ground, and 65535 means
 that the incoming voltage was equal (within the 10-bit resolution) to the Serial Wombat chip’s
 source voltage. Because 0-65535 represents a 16 bits of resolution but the Serial Wombat 4B
 chip’s A/D unit is only 10 bits, values will exhibit quantization in 64 count increments (e.g. the
 raw results can be 0, 64, 128, 32768, 51200 … but not 7, 71, 132, 32784, 51213, etc). In the
 case that the A/D reports a maximum value of 65472, this value is reported as 65535 (to be
 consistent with using that value to represent positive maximum scale).

 Averaged value is computed by adding 64 samples together. For some signals this may
 effectively increase resolution depending on the amplitude and distribution of noise on the
 signal. The average output updates every 64 samples, so it some latency is introduced by
 using this value instead of the raw or filtered values.

 Filtered value is computed by taking the previous filtered value times the filter constant + the
 new value times 65536 minus the filter constant, then dividing the sum by 65536. Given the
 1kHz sampling frequency, the following cut-off (3dB down) frequencies can be achieved with
 constant values:

 ● 0.5 Hz 65417
 ● 1 Hz 65298
 ● 2 Hz 65062
 ● 5 Hz 64358
 ● 10 Hz 63202

 Filtering adds lag. The higher the filter constant value, the longer it takes for the filter to settle when

 given a steady input.

 Averaging and filtering are particularly useful on an expansion ADC device such as the Serial
 Wombat 4B because they allow a higher effective sampling rate than what can be achieved over
 I2C when also communicating with other devices.

 Serial Wombat 4B Chip User Guide Page 32 of 41
 V2.0.3_B

 Minimum and maximum tracking record the lowest and highest seen raw A/D conversion value
 for that pin. These values can optionally be cleared when read in the same communication
 request. Note that noisy signals can generate minimum or maximum values that are not
 qualitatively representative of the signal.

 The Serial Wombat 4B chip is capable of measuring an internal reference voltage which in turn
 can be used to infer the system voltage. The Arduino library has functions to retrieve the
 system voltage, as well as output A/D conversions in mV rather than counts using the measured
 system voltage as the high value for the ratiometric conversion.

 Input impedance for A/D inputs should be 5 kOhm or less. See the PIC16F15214 datasheet for
 additional performance and electrical characteristics of the A/D converter circuit.

 A video tutorial of the Serial Wombat 4B chip’s analog capabilities is available here:
 https://www.youtube.com/watch?v=_EKlrEVaEhg

 The Arduino class is documented here:
 https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_analog_input
 .html

 Here’s an Arduino example of the using 3 pins to monitor two potentiometers and a TMP32
 temperature sensor using the Analog Input pin mode:

 #include < SerialWombat . h >

 Serial Wombat 4B Chip User Guide Page 33 of 41
 V2.0.3_B

https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_analog_input.html
https://broadwellconsultinginc.github.io/SerialWombatArdLib/class_serial_wombat_analog_input.html

 SerialWombatChip sw6C; //Declare a Serial Wombat
 SerialWombatAnalogInput leftPot(sw6C); //5k linear Pot
 SerialWombatAnalogInput rightPot(sw6C); //5k linear Pot
 SerialWombatAnalogInput temperatureSensor(sw6C);

 // This example is explained in a video tutorial at: https://youtu.be/_EKlrEVaEhg

 void setup () {
 // put your setup code here, to run once:

 { //I2C Initialization
 Wire . begin ();
 digitalWrite (A5 , LOW); //Arduino Uno Specific. Turn off I2C pull up
 digitalWrite (A4 , LOW); //Arduino Uno Specific. Turn off I2C pull up
 sw6C . begin (Wire , 0x6C); //Initialize the Serial Wombat library to use the primary I2C port,

 SerialWombat is address 6C
 }
 leftPot . begin (3);
 rightPot . begin (1);
 temperatureSensor . begin (2 , 64 , 65417); // Wombat pin 2, average 64 samples, .5 Hz Low Pass filter
 Serial . begin (115200);

 }

 void loop () {

 Serial . print ("Source V: ");
 uint16_t supplyVoltage = sw6C . readSupplyVoltage_mV ();
 Serial . print (supplyVoltage);
 Serial . print ("mV Left Pot: ");
 Serial . print (leftPot . readCounts ());
 Serial . print (" ");

 uint16_t leftVoltage = leftPot . readVoltage_mV ();
 Serial . print (leftVoltage);
 Serial . print ("mV Right Pot:");

 Serial . print (rightPot . readCounts ());
 Serial . print (" ");
 uint16_t rightVoltage = rightPot . readVoltage_mV ();
 Serial . print (rightVoltage);

 Serial . print ("mV T:");

 Serial . print (temperatureSensor . readCounts ());
 Serial . print (" ");
 Serial . print (temperatureSensor . readVoltage_mV ());
 Serial . print ("mV ");

 float tempSensor_mV = temperatureSensor . readAveraged_mV ();

 //See datasheet for TMP36 Temperature sensor for conversion
 float temperature = (tempSensor_mV - 750) / 10.0 + 25;

 Serial . print (temperature);
 Serial . print (" deg C ");

 Serial . println ();
 delay (200);

 }

 Serial Wombat 4B Chip User Guide Page 34 of 41
 V2.0.3_B

 Sleep Mode

 The Serial Wombat 4B chip is typically running firmware at 32MHz internally, leading to a
 constant consumption of a few mA of current. The Serial Wombat 4B chip can be configured to
 enter Sleep mode in which execution of the executive stops, and the Serial Wombat 4B chip
 waits for an I2C command to wake and resume operation. In Sleep mode the current is
 typically in the low microamps range, dependent on the configuration of the chip when Sleep
 was commanded. Note that the chip stops execution of all functions, including protected output
 and PWM generation, when Sleep is commanded. The state of PWM and UART outputs (high
 or low) is not specified at this point. Any outputs should be put in a known state by the host
 prior to entering Sleep mode.

 A video on using Sleep Mode is available here:

 https://youtu.be/jVkQ1YoqcpI

 Serial Wombat 4B Chip User Guide Page 35 of 41
 V2.0.3_B

https://youtu.be/jVkQ1YoqcpI

 Unique Identifier
 Each Serial Wombat 4B chip has a unique, unchangeable identifier programmed into the
 microcontroller when it is manufactured by Microchip. A demonstration of this capability is
 shown in this video:

 https://youtu.be/IHTcKyXT_2Q

 Serial Wombat 4B Chip User Guide Page 36 of 41
 V2.0.3_B

https://youtu.be/IHTcKyXT_2Q

 Protocol Analyzer
 A protocol analyzer is available to monitor and decode Serial Wombat commands sent over an
 I2C or UART bus. This analyzer runs on top of the Saleae Logic software package and is
 available for download through that application. This tool can be useful in debugging projects
 that include the Serial Wombat 4B chip.

 A video is available here:

 https://youtu.be/cL7kUm9qjvU

 Serial Wombat 4B Chip User Guide Page 37 of 41
 V2.0.3_B

https://youtu.be/cL7kUm9qjvU

 Troubleshooting

 Step 1: Check the basics
 General Stuff:

 ● Make sure your chip has a stable, in-range power supply and that the included
 capacitors are attached across the power and ground pins. If you can, verify power
 voltage using a multimeter

 ● Make sure your chip is connected properly. Ensure that the chip is in the proper
 orientation (power pins are near the notch) and that a 100uF capacitor is connected
 across Vdd and GND.

 ● Disconnect any loads (such as motors, servos, or relays) from your circuit. Frequently
 these devices can sufficiently disrupt the power supply such that the Serial Wombat 4B
 chip’s internal low-voltage-reset circuit triggers. It is suggested that inductive loads not
 be driven directly from the same supply driving logic portions of the circuit.

 ● If you’re using a decal on the Serial Wombat chip, is it oriented in the correct direction?
 Make sure the black notch at one end of the decal matches up with the black dot on the
 chip

 ● Make sure you’re using the latest Arduino / C# / Python library. It’s possible your issue is
 fixed in a newer version than you have

 Serial Wombat 4B Chip User Guide Page 38 of 41
 V2.0.3_B

 ● In Arduino, consider registering the default error handler. This provides helpful
 information (particularly on the 18AB) about configuration errors.

 I2C related Stuff
 ● If connected using I2C, make sure you have pull up resistors on SCL and SDA (don’t

 rely on internal pull ups on your chip, they’re typically out of spec for I2C).

 ● Make sure your SDA line from the Arduino or other host is attached to the SDA line on
 the Serial Wombat Chip. Same for SCL. Did you accidentally cross them?

 ● Does the Serial Wombat chip finder sketch in the Arduino Examples / Serial Wombat
 directory find the Serial Wombat chip? This should always work if your hardware is
 setup correctly

 ● In your sketch, do you call begin on Wire then on the Serial Wombat chip?

 ● Can you verify proper I2C traffic operation using a Logic analyzer? See this video for a
 cheap way to do this. https://youtu.be/cL7kUm9qjvU

 Step 2: Check the YouTube video and comments
 Go to the Broadwell Consulting Inc. YouTube channel and take a look at the Serial Wombat
 playlist. Watch the video for the task you’re trying to achieve, and check the comments to see if
 any other users have asked a question about your issue.
 If not, then leave a comment with your question on the video that best matches what you’re
 trying to do.

 Serial Wombat 4B Chip User Guide Page 39 of 41
 V2.0.3_B

https://youtu.be/cL7kUm9qjvU
https://www.youtube.com/channel/UCG_6rQBf_OG-WLd7tRDCQQQ

 Additional Resources:

 YouTube
 The Broadwell Consulting Inc. YouTube Channel has many helpful tutorial Videos which walk
 through how to use the various Serial Wombat chip pin modes and features.

 Arduino Library
 The Serial Wombat Arduino Library supports the Serial Wombat 4B and Serial Wombat
 18AB chips.
 The library documentation is available on github.io . Click on the classes tab to see
 documentation and interfaces for individual pin modes.
 The Serial Wombat Arduino Library is available on GitHub . This is a good place to log
 an issue if you find a bug in the Arduino library or want to request new features. Please
 don’t use the issue system for support requests.

 Serial Wombat 4B firmware
 The Serial Wombat 4B source code documentation and protocol definition are available
 on github.io .
 The Serial Wombat 4B firmware source code is available on GitHub .

 Support and Technical Assistance
 If the above troubleshooting and guides don’t solve your problem, contact Broadwell Consulting
 at help@serialwombat.com for support. Support requests sent in over email may take a couple
 of days to respond. Priority is given to questions asked in public forums such as on the
 YouTube channel so that others can benefit from the answers.

 Serial Wombat 4B Chip User Guide Page 40 of 41
 V2.0.3_B

https://www.youtube.com/channel/UCG_6rQBf_OG-WLd7tRDCQQQ/playlists
https://broadwellconsultinginc.github.io/SerialWombatArdLib/
https://github.com/BroadwellConsultingInc/SerialWombatArdLib
https://broadwellconsultinginc.github.io/SerialWombat/sw4AB/index.html
https://github.com/BroadwellConsultingInc/SerialWombat
mailto:help@serialwombat.com

 Revision History

 Version Changes

 V2.0.3_A Initial Version

 V2.0.3_B Added Quadrature Encoder Pin Mode, Updated Title page

 Serial Wombat 4B Chip User Guide Page 41 of 41
 V2.0.3_B

